from scipy.io import arff
dataset=arff.loadarff("D:/res/weather.nominal.arff")
print(dataset)
In [24]: type(dataset)
Out[24]: tuple
In [25]: type(dataset[0])
Out[25]: numpy.ndarray
In [26]: type(dataset[1])
Out[26]: scipy.io.arff.arffread.MetaData
In [40]: dataset[0]
Out[40]:
array([(b'sunny', b'hot', b'high', b'FALSE', b'no'),
(b'sunny', b'hot', b'high', b'TRUE', b'no'),
(b'overcast', b'hot', b'high', b'FALSE', b'yes'),
(b'rainy', b'mild', b'high', b'FALSE', b'yes'),
(b'rainy', b'cool', b'normal', b'FALSE', b'yes'),
(b'rainy', b'cool', b'normal', b'TRUE', b'no'),
(b'overcast', b'cool', b'normal', b'TRUE', b'yes'),
(b'sunny', b'mild', b'high', b'FALSE', b'no'),
(b'sunny', b'cool', b'normal', b'FALSE', b'yes'),
(b'rainy', b'mild', b'normal', b'FALSE', b'yes'),
(b'sunny', b'mild', b'normal', b'TRUE', b'yes'),
(b'overcast', b'mild', b'high', b'TRUE', b'yes'),
(b'overcast', b'hot', b'normal', b'FALSE', b'yes'),
(b'rainy', b'mild', b'high', b'TRUE', b'no')],
dtype=[('outlook', 'S8'), ('temperature', 'S4'), ('humidity', 'S6'), ('win
dy', 'S5'), ('play', 'S3')])
In [41]: dataset[1]
Out[41]:
Dataset: weather.symbolic
outlook's type is nominal, range is ('sunny', 'overcast', 'rainy')
temperature's type is nominal, range is ('hot', 'mild', 'cool')
humidity's type is nominal, range is ('high', 'normal')
windy's type is nominal, range is ('TRUE', 'FALSE')
play's type is nominal, range is ('yes', 'no')
先来了解什么是dtype类型
数组元素(numpy.array())的类型通过dtype属性获得。
In [43]: import numpy as np
In [44]: a=np.array([1,2,3,4,5])
In [45]: a
Out[45]: array([1, 2, 3, 4, 5])
In [46]: a.dtype
Out[46]: dtype('int32')
In [47]: b=np.array([1,2,3,4,5],dtype=np.float)
In [48]: b
Out[48]: array([1., 2., 3., 4., 5.])
In [49]: b.dtype
Out[49]: dtype('float64')
而且,每一种数据类型都有几种字符串表达形式,我们可以使用typeDict字典来查询某种字符串所代表的数据类型,比如“d”和“double”都是float64数据类型:
In [51]: np.typeDict['d']
Out[51]: numpy.float64
In [52]: np.typeDict['double']
Out[52]: numpy.float64
In [53]: np.typeDict['f']
Out[53]: numpy.float32
In [54]: np.typeDict['I']
Out[54]: numpy.uint32
In [57]: dt=np.dtype([('name','S8'),('age','I'),('grade','f')])
In [58]: student=np.array([('lili',14,90),('dada',13,67),('jiji',14,87)],dtype=
...: dt)
In [59]: student
Out[59]:
array([(b'lili', 14, 90.), (b'dada', 13, 67.), (b'jiji', 14, 87.)],
dtype=[('name', 'S8'), ('age', '), ('grade', ')])
In [60]: student['name']
Out[60]: array([b'lili', b'dada', b'jiji'], dtype='|S8')
In [61]: student['age']
Out[61]: array([14, 13, 14], dtype=uint32)
In [62]: student[0]
Out[62]: (b'lili', 14, 90.)