Python语言实现哈夫曼编码

汉语版:使用python实现huffman编码是一个能够很快地实现。所以我们选择使用python来实现我们这个程序。 l

E-version: we will use python to realize this program called huffman encoding and decoding. why we use python, because in python we can finish this program faster then other codes. this program are not the final implementation. actually, this is the first version i commit to git. i changed a lot in the least version . so if you run those codes on your environment. some problems may be exist; don`t worry, the first four drafts are right, you  can build everything based on them. so good lucky to you.

I:实现节点类

class Node:
    def __init__(self,freq):
        self.left = None
        self.right = None
        self.father = None
        self.freq = freq

    def is_left(self):
        return self.father.left == self

II:为每一个节点赋权值

def create_nodes(frequencies):
    return [Node(freq) for freq in frequencies]

III:创建哈夫曼树

def create_huffman_tree(nodes):
    queue = nodes[:]
    while len(queue) > 1:
        queue.sort(key=lambda item: item.freq)
        node_left = queue.pop(0)
        node_right = queue.pop(0)
        node_father = Node(node_left.freq + node_right.freq)
        node_father.left = node_left
        node_father.right = node_right
        node_left.father = node_father
        node_right.father = node_father
        queue.append(node_father)
    queue[0].father = None
    return queue[0]

III:遍历叶节点

def huffman_encoding(nodes, root):
    codes = [''] * len(nodes)
    for i in range(len(nodes)):
        node_tmp = nodes[i]
        while node_tmp != root:
            if node_tmp.is_left():
                codes[i] = '0' + codes[i]
            else:
                codes[i] = '1' + codes[i]
            node_tmp = node_tmp.father
    return codes

IV:获取字符出现的频数

# 获取字符出现的频数
def count_frequency(input_string):
    # 用于存放字符
    char_store = []
    # 用于存放频数
    freq_store = []

    # 解析字符串
    for index in range(len(input_string)):
        if char_store.count(input_string[index]) > 0:
            temp = int(freq_store[char_store.index(input_string[index])])
            temp = temp + 1
            freq_store[char_store.index(input_string[index])] = temp
        else:
            char_store.append(input_string[index])
            freq_store.append(1)
    # 返回字符列表和频数列表
    return char_store, freq_store

V:获取字符、频数的列表

# 获取字符、频数的列表
def get_char_frequency(char_store=[], freq_store=[]):
    # 用于存放char_frequency
    char_frequency = []
    for item in zip(char_store, freq_store):
        temp = (item[0], item[1])
        char_frequency.append(temp)
    return char_frequency

VI:将字符转换成哈夫曼编码


# 将字符转换成huffman编码
def get_huffman_file(input_string, char_frequency, codes):
    # 逐个字符替换
    file_content = ''
    for index in range(len(input_string)):
        for item in zip(char_frequency, codes):
            if input_string[index] == item[0][0]:
                file_content = file_content + item[1]
    file_name = 'huffman_' + str(uuid.uuid1())+'.txt'
    with open(file_name, 'w+') as destination:
        destination.write(file_content)
    return file_name

VII:解压缩哈夫曼文件

# 解压缩huffman文件
def decode_huffman(input_string,  char_store, freq_store):
    encode = ''
    decode = ''
    for index in range(len(input_string)):
        encode = encode + input_string[index]
        for item in zip(char_store, freq_store):
            if encode == item[1]:
                decode = decode + item[0]
                encode = ''
    return decode

VIII:计算压缩比(写错了,可以自行改写)

# 计算压缩比
def get_encode_ration(codes):
    # 计算所需要的二进制个数
    h_length = 0
    for item in codes:
        h_length = h_length + len(item)
    t_length = bin_middle(len(codes))*len(codes)
    ratio = t_length/h_length
    return str(ratio)[0:3]

# 计算所在的二进制空间
def bin_middle(number):
    n, i = 1, 0
    while n < number:
        n = n * 2
        i = i + 1
    return i

最后:Django文件接收,并返回


def upload(request):
    ctx = {}
    if request.method == "POST":
        file_name = str(request.FILES['file'])
        if not file_name.endswith('txt'):
            ctx['fail'] = 'file format exist wrong!'
        else:
            file = request.FILES['file']
            ctx['success'] = 'Successful'
            input_string = tool.read_file(tool.save_file(file))
            char_store, freq_store = tool.count_frequency(input_string)
            char_frequency = tool.get_char_frequency(char_store, freq_store)
            nodes = huf.create_nodes([item[1] for item in char_frequency])
            root = huf.create_huffman_tree(nodes)
            codes = huf.huffman_encoding(nodes, root)
            save_file_name = tool.get_huffman_file(input_string, char_frequency, codes)
            for item in zip(char_frequency, codes):
                print('Character:%s freq:%-2d   encoding: %s', item[0][0], item[0][1], item[1])
            ctx['node'] = char_frequency

            def file_iterator(files, chunk_size=512):
                with open(files) as f:
                    while True:
                        c = f.read(chunk_size)
                        if c:
                            yield c
                        else:
                            break
            the_file_name = tool.get_encode_ration(codes)+'_'+str(uuid.uuid1())+'.txt'
            response = StreamingHttpResponse(file_iterator(save_file_name))
            response['Content-Type'] = 'application/octet-stream'
            response['Content-Disposition'] = 'attachment;filename="{0}"'.format(the_file_name)
            return response


你可能感兴趣的:(python)