tensorflow——tf.one_hot以及tf.sparse_to_dense函数

1、tf.one_hot函数

import numpy as np
import tensorflow as tf

SIZE=6
CLASS=10
label1=np.random.randint(0,10,size=SIZE) 

b = tf.one_hot(label1,CLASS,1,0)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    sess.run(b)
    print(sess.run(b))

输出结果:
产生的随机数:[7, 2, 9, 8, 4, 2]

[[ 0.  0.  0.  0.  0.  0.  0.  1.  0.  0.]
 [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  1.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  1.  0.]
 [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  1.  0.  0.  0.  0.  0.]]

2、tf.sparse_to_dense函数

import tensorflow as tf   
import numpy as np

SIZE=6
CLASS=10
label=np.random.randint(0,10,size=SIZE) 
label=np.reshape(label,[SIZE,1])
index = np.reshape(np.arange(SIZE), [SIZE, 1])
#use a matrix  
concated = tf.concat([index, label], 1)  
onehot_labels = tf.sparse_to_dense(concated, [SIZE, CLASS], 1.0, 0.0)  

#use a vector  
concated2=tf.constant([1,3,4])  
onehot_labels2 = tf.sparse_to_dense(concated2, [ CLASS], 1.0, 0.0)

#use a scalar  
concated3=tf.constant(5)  
onehot_labels3 = tf.sparse_to_dense(concated3, [ CLASS], 1.0, 0.0)  

with tf.Session() as sess:  
    sess.run(tf.global_variables_initializer())
    result1=sess.run(onehot_labels)  
    result2 = sess.run(onehot_labels2)  
    result3 = sess.run(onehot_labels3)  
    print ("This is result1:")  
    print (result1)  
    print ("This is result2:")  
    print (result2)  
    print ("This is result3:")  
    print (result3) 

输出结果:
产生的随机数:[7, 2, 9, 8, 4, 2]

This is result1:
[[ 0.  0.  0.  0.  0.  0.  0.  1.  0.  0.]
 [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  1.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  1.  0.]
 [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  1.  0.  0.  0.  0.  0.]]
This is result2:
[ 0.  1.  0.  1.  1.  0.  0.  0.  0.  0.]
This is result3:
[ 0.  0.  0.  0.  0.  1.  0.  0.  0.  0.]

你可能感兴趣的:(tensorflow——tf.one_hot以及tf.sparse_to_dense函数)