hdu3450 Counting Sequences(dp+离散化+树状数组优化)

Problem Description
For a set of sequences of integers{a1,a2,a3,…an}, we define a sequence{ai1,ai2,ai3…aik}in which 1<= i1 < i2< i3<…< ik<=n, as the sub-sequence of {a1,a2,a3,…an}. It is quite obvious that a sequence with the length n has 2^n sub-sequences. And for a sub-sequence{ai1,ai2,ai3…aik},if it matches the following qualities: k >= 2, and the neighboring 2 elements have the difference not larger than d, it will be defined as a Perfect Sub-sequence. Now given an integer sequence, calculate the number of its perfect sub-sequence.

Input
Multiple test cases The first line will contain 2 integers n, d(2<=n<=100000,1<=d=<=10000000) The second line n integers, representing the suquence

Output
The number of Perfect Sub-sequences mod 9901

Sample Input
4 2
1 3 7 5

Sample Output
4

大致题意:给你n个数,让你找出找出长度大于2,且相邻两个数的差值不大于d的子序列的个数

思路:和hdu2227那题差不多,也是先离散化,然后用树状数组来优化dp,最后取模的时候要注意下。

代码如下

#include 
#include 
#include   
#include   
#define ll long long int   
using namespace std;
const int N=1e5+5; 
const int mod=9901;
int dp[N];
int n,d;
int a[N],b[N],HASH[N];
int tot;
int lowbit(int x)
{
    return x&-x;
}

int sum(int x)
{
    int s=0;
    while(x>0)
    {
        s=(s+dp[x])%mod;
        x=x-lowbit(x);
    }
    return s;
}

void add(int x,int date)
{
    while(x<=n)
    {
        dp[x]=(dp[x]+date)%mod;
        x=x+lowbit(x);
    }
}

int findR(int v)
{
    int i=1,j=tot+1,mid;

    while(i2;
        if(HASH[mid]<=v)    
            i=mid+1;
        else 
            j=mid;
    }
    return i-1;
}

int findL(int v)
{
    int i=1,j=tot+1,mid;

    while(i2;
        if(HASH[mid]1;
        else 
            j=mid;
    }
    return i-1;
}

int main()  
{
    while(~scanf("%d%d",&n,&d))
    {
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            b[i]=a[i];
        }
        sort(b+1,b+n+1);
        tot=1;
        HASH[1]=b[1];
        for(int i=2;i<=n;i++)
            if( b[i]!=b[i-1] )
                HASH[++tot]=b[i];

        for(int i=1;i<=n;i++)
        {
            int L=findL(a[i]-d),id=findL(a[i])+1,R=findR(a[i]+d);
            int tmp=sum(R)-sum(L);
            add(id,tmp+1);
        }
        printf("%d\n",((sum(tot)-n)%mod+mod)%mod);
    }   
    return 0;  
}   

你可能感兴趣的:(dp,线段树&树状数组&主席树)