spark:ML和MLlib的区别


ML和MLlib的区别如下:

  • ML是升级版的MLlib,最新的Spark版本优先支持ML。
  • ML支持DataFrame数据结构和Pipelines,而MLlib仅支持RDD数据结构。
  • ML明确区分了分类模型和回归模型,而MLlib并未在顶层做此类区分。
  • ML通过DataFrame元数据来区分连续和分类变量。
  • ML中的随机森林支持更多的功能:包括重要度、预测概率输出等,而MLlib不支持。


official documentation:
  • The main differences between this API and the original MLlib ensembles API are:
  • support for DataFrames and ML Pipelines
  • separation of classification vs. regression
  • use of DataFrame metadata to distinguish continuous and categorical features
  • more functionality for random forests: estimates of feature importance, as well as the predicted probability of each class (a.k.a. class conditional probabilities) for classification.

你可能感兴趣的:(机器学习,Spark)