假如,我有32-bit
8bit | 8bit | 8bit | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
对于整形int,我们可以很快得出,这是 int i = 15的内存形式。
假设,最低位的bit的位权为-1,最高位为30。 那么这个就不再表示数字15了,而是
2^-1+2^0+2^1+2^2 = 7.5 了。
当然,上面只是假设,那么真正的Float 浮点型 在内存中是什么样子的呢?
首先需要知道的是 float 在内存中 占 32-bit double型 占 64-bit。
浮点型 在内存中,有3部分构成。
- Sign bit
- Exponent (指数)
- Mantissa(尾数,有效数字)
sign bit
是指浮点数在内存中的 最高位,0 表示 正数,1 表示负数。Sing bit 在浮点数float,32-bit内存中,占 1-bit 。
Exponent
指数,比如 10^5,2^6,这两个数的 5,6既是exponent。当然,数字在内存中都是以2进制体现的,所以这里的指数,是指以2为底 的指数。比如
0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
很容易可以知道 Exponent为 6,在表示浮点数的内存中,表示的是 2^6 = 64。
Expoent 在 Float 32-bit的内存中,占8-bit,在这里把此8-bit视为表示unsigned int 的bit pattern。那么可以表示的范围是0~256的整数(指数范围), 但是指数既可以为正整数,也可以为负整数,这样以来无法表示-1,-2....这样的负整数了,所以 IEEE Standard 754 Floating-Point 对此引入了Bias, 偏移量的概念,对于Float型,此偏移量为127. 也就是说 127 这个数字已经被存储到 Exponent这个部分中了,像之前的那个例子,
0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
表示的是指数6,但是在float内存结构中,其实表示的是 (6-127)= -121。需要减去已存入的偏移量 127。
假如 2^(1),指数1在float 的内存结构中的 bit pattern是什么样子的?
那会不会就是简单的
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
应该是 exponent - 127 = 1;(2^(1)中的指数1是这样得来的)
exponent = 127+1 = 128.(2^(1)中的指数1,在float内存结构中应该是128的bit pattern才对)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
这只是个例子,帮助理解exponent,不会真的问这样的问题。。。。
Double型,需要占用64-bit 内存空间。同样,也是由 Sign bit,Exponent,Mantissa 3部分构成,不过 Exponent部分,在整个64-bit中 要占到 11-bit。此外偏移量 为1023。
Mantissa
Mantissa 尾数部分, 在float的32-bit的内存空间中,占到23-bit注意之前说的exponent 指数,最低位是从0开始的,那么Mantissa,尾数的最高位当然是 -1了。
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
那么大家说下,上面的尾数部分在 float 浮点数的内存中,表示多少? 很快可以得到是
2^(-2)+2^(-3) = 0.375。 有错了,应该是1.375。
大家回想下小学学的 科学记数法,5 = 5.0*10^0 , 0.75 = 7.5*10^(-1)。对吧?
在Float的内存表示中,这23-bit的尾数 仅仅表示 科学记数法 中 非零实数小数点后的精度。 换句话说, Mantissa 包括两部分,一个是leading bit(科学记数法的非零实数),另一个是fraction bits(即精度),此23-bit仅仅表示的是 fraction bits。而在二进制中,非零实数自然是1了,所以leading bit默认是1了。所以上述表格实际上是表示
引用
1 +
这也就是为什么,在float的内存中,尾数部分可以用23-bit pattern 来表示出24-bit的不同数字了。
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
在Double型的 64-bit 内存结构中,尾数部分要占到52-bit。
我们用个表格来表示 在内存中,float是怎样存储的。
s | <---------------- 8 ----------------> | <-------------------------------------------- 23----------------------------------------------> |
上面这个表格所要 表示的是如下的浮点数
(-1)^s * 1.f * 2^(Exponent-127)
随手写了个32-bit pattern,
0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
假如告诉你,这是一个浮点型的内存结构,那么这个浮点数是多少呢?
这个浮点数可以很快的得到 (-1)^0*1.(2^-2+2^-3)*2^(2^1+2^2+2^4-127)。
以上是对Float double 型的内存结构的分析,前面 http://chuansu.iteye.com/blog/1484742 提到了int short char之间的相互转化,那么Float Double与int的转化又会发生什么?
未完-待续