锁持有者管理器AbstractOwnableSynchronizer: http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport: http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态: http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解: http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解: http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景: http://donald-draper.iteye.com/blog/2348106
CountDownLatch详解: http://donald-draper.iteye.com/blog/2360597
package java.util.concurrent; import java.util.concurrent.locks.*; /** * A synchronization aid that allows a set of threads to all wait for * each other to reach a common barrier point. CyclicBarriers are * useful in programs involving a fixed sized party of threads that * must occasionally wait for each other. The barrier is called * [i]cyclic[/i] because it can be re-used after the waiting threads * are released. * 同步工具CyclicBarrier,一个集合线程,等待每一个线程达到共同的屏障点。 CyclicBarriers对一个复杂的线程集合必须互相等待完成任务,场景非常有用。 同步工具的屏障可以循环利用,因为在所有等待线程释放锁时,他可以被重新使用。 *A CyclicBarrier supports an optional {@link Runnable} command * that is run once per barrier point, after the last thread in the party * arrives, but before any threads are released. * This [i]barrier action[/i] is useful * for updating shared-state before any of the parties continue. * CyclicBarrier的构造函数中,有一个带Runnable,在所有线程到达屏障点,并且共享锁没有完全释放, 这个功能,对于在其他线程继续执行任务前,更新共享状态非常有用。 *
Sample usage: Here is an example of * using a barrier in a parallel decomposition design: *
简单的一个实例用,在并行的分解任务中,使用barrier * class Solver { * final int N; * final float[][] data; * final CyclicBarrier barrier; * * class Worker implements Runnable { * int myRow; * Worker(int row) { myRow = row; } * public void run() { * while (!done()) { * processRow(myRow); * * try { * barrier.await(); * } catch (InterruptedException ex) { * return; * } catch (BrokenBarrierException ex) { * return; * } * } * } * } * * public Solver(float[][] matrix) { * data = matrix; * N = matrix.length; * barrier = new CyclicBarrier(N, * new Runnable() { * public void run() { * mergeRows(...); * } * }); * for (int i = 0; i < N; ++i) * new Thread(new Worker(i)).start(); * * waitUntilDone(); * } * } ** Here, each worker thread processes a row of the matrix then waits at the * barrier until all rows have been processed. When all rows are processed * the supplied {@link Runnable} barrier action is executed and merges the * rows. If the merger * determines that a solution has been found then done() will return * true and each worker will terminate. 上述实例,描述的每个线程处理矩阵的每一行数据,当线程处理完一行数据时,等待其他线程处理完各自 的一行数据。当所有的线程处理完各自行数据时,屏障点线程Runnable,执行合并矩阵的行数据。 当屏障点线程Runnable,决定执行合并是,每个线程的done函数返回true,结束每个线程工作。 *If the barrier action does not rely on the parties being suspended when * it is executed, then any of the threads in the party could execute that * action when it is released. To facilitate this, each invocation of * {@link #await} returns the arrival index of that thread at the barrier. * You can then choose which thread should execute the barrier action, for * example: 屏障点action动作线程的执行,不能依赖于组线程中将要暂定的线程,分组中的每一个线程,都可以 执行action,在共享锁被释放之前。为了优化action的执行,我们可以利用,在每个线程调用await方法时, 返回线程到达屏障点的index,来决定,那个线程执行屏障动作。 *
if (barrier.await() == 0) { //最后一个到达屏障点的线程,执行屏障action * // log the completion of this iteration * }* *The CyclicBarrier uses an all-or-none breakage model * for failed synchronization attempts: If a thread leaves a barrier * point prematurely because of interruption, failure, or timeout, all * other threads waiting at that barrier point will also leave * abnormally via {@link BrokenBarrierException} (or * {@link InterruptedException} if they too were interrupted at about * the same time). * CyclicBarrier对于失败同步的尝试,用all-or-none breakage model: 如果一个线程,因为中断,失败,超时,永久的离开屏障点,那么其他在屏障点等待的线程, 通过BrokenBarrierException,abnormally离开。 *
Memory consistency effects: Actions in a thread prior to calling * {@code await()} * [url=package-summary.html#MemoryVisibility]happen-before[/url] * actions that are part of the barrier action, which in turn * happen-before actions following a successful return from the * corresponding {@code await()} in other threads. * 内存一致性:actions优先call await函数,这个基于内存可见机制-happen-before法则。 屏障点的分组线程,返回happen-before,协调分组线程工作的线程,await的成功返回。 * @since 1.5 * @see CountDownLatch * * @author Doug Lea */ public class CyclicBarrier { /** * Each use of the barrier is represented as a generation instance. * The generation changes whenever the barrier is tripped, or * is reset. There can be many generations associated with threads * using the barrier - due to the non-deterministic way the lock * may be allocated to waiting threads - but only one of these * can be active at a time (the one to which count applies) * and all the rest are either broken or tripped. * There need not be an active generation if there has been a break * but no subsequent reset. */ 每次屏障点,表示一代实例。当屏障点被打开或者重置时,generation将会改变。 由于锁以不确定的方式,分配给等待线程,线程可以多代屏障点的方式,使用barrier。 如果线程组存在break,并且没有reset,则不需要激活一代。 Generation可以这么理解,当有线程有多个分组,一个分组执行完,执行下一组;每一组 我们可以理解为Generation,当线程组出现break,且没有reset,则Generation不会被激活。 private static class Generation { boolean broken = false; } /** The lock for guarding barrier entry */ 屏障点保护锁 private final ReentrantLock lock = new ReentrantLock(); /** Condition to wait on until tripped */ 条件等待,直到所有的线程打开锁, private final Condition trip = lock.newCondition(); /** The number of parties */ 共享锁数量 private final int parties; /* The command to run when tripped */ 障碍点执行的命令 private final Runnable barrierCommand; /** The current generation */ 当前代 private Generation generation = new Generation(); /** * Number of parties still waiting. Counts down from parties to 0 * on each generation. It is reset to parties on each new * generation or when broken. */ 表示分组中,还有多少个在等待。在每一代,count从parties to 0。 在每一次创建新生代中或broken时,count重置为parties private int count; }
先看构造:
/** * Creates a new CyclicBarrier that will trip when the * given number of parties (threads) are waiting upon it, and which * will execute the given barrier action when the barrier is tripped, * performed by the last thread entering the barrier. *常见一个屏障点,当所有parties线程在等待时,将会打开,同时最后一个进入 屏障点的线程,将会执行barrierAction。 * @param parties the number of threads that must invoke {@link #await} * before the barrier is tripped * @param barrierAction the command to execute when the barrier is * tripped, or {@code null} if there is no action * @throws IllegalArgumentException if {@code parties} is less than 1 */ public CyclicBarrier(int parties, Runnable barrierAction) { if (parties <= 0) throw new IllegalArgumentException(); this.parties = parties; this.count = parties; this.barrierCommand = barrierAction; } /** * Creates a new CyclicBarrier that will trip when the * given number of parties (threads) are waiting upon it, and * does not perform a predefined action when the barrier is tripped. * * @param parties the number of threads that must invoke {@link #await} * before the barrier is tripped * @throws IllegalArgumentException if {@code parties} is less than 1 */ public CyclicBarrier(int parties) { this(parties, null); }
线程代broken处理
/** * Sets current barrier generation as broken and wakes up everyone. * Called only while holding lock. */ 当线程持有锁,设置当前线程代broken,唤醒当前代线程 private void breakBarrier() { // generation.broken = true; //重置共享锁状态 count = parties; //唤醒所有在屏障点,等待的线程 trip.signalAll(); }
创建下一代
/** * Updates state on barrier trip and wakes up everyone. * Called only while holding lock. */ 线程持有锁,更新屏障点状态,唤醒所有等待,线程 private void nextGeneration() { // signal completion of last generation //唤醒上一代,完成的线程 trip.signalAll(); // set up next generation //重置共享锁状态 count = parties; //创建下一代 generation = new Generation(); } }
我们来看屏障等待
/** * Waits until all {@linkplain #getParties parties} have invoked * await on this barrier. * 等待所享有的线程到达屏障点 *If the current thread is not the last to arrive then it is * disabled for thread scheduling purposes and lies dormant until * one of the following things happens: 当线程不是最后一个到达屏障点,线程将会不会被调度,直到以下情况发生 * [list] *
If the current thread: * [list] *
If the barrier is {@link #reset} while any thread is waiting, * or if the barrier {@linkplain #isBroken is broken} when * await is invoked, or while any thread is waiting, then * {@link BrokenBarrierException} is thrown. *当其他线程在等待,如果屏障点被重置,或broke,则抛出BrokenBarrierException *
If any thread is {@linkplain Thread#interrupt interrupted} while waiting, * then all other waiting threads will throw * {@link BrokenBarrierException} and the barrier is placed in the broken * state. *在等待的过程中,如果其他线程中断,则抛出BrokenBarrierException,屏障点 设置为broken状态。 *
If the current thread is the last thread to arrive, and a
* non-null barrier action was supplied in the constructor, then the
* current thread runs the action before allowing the other threads to
* continue.
如果当前线程,是最后一个到达屏障点的,如果屏障点动作线程不为null,
则执行action,在下一代线程组执行任务前。
* If an exception occurs during the barrier action then that exception
* will be propagated in the current thread and the barrier is placed in
* the broken state.
*如果在执行action的过程中,出现异常,则当前线程将会抛出异常,屏障点处于破位状态
* @return the arrival index of the current thread, where index
* {@link #getParties()} - 1 indicates the first
* to arrive and zero indicates the last to arrive
* @throws InterruptedException if the current thread was interrupted
* while waiting
* @throws BrokenBarrierException if [i]another[/i] thread was
* interrupted or timed out while the current thread was
* waiting, or the barrier was reset, or the barrier was
* broken when {@code await} was called, or the barrier
* action (if present) failed due an exception.
*/
public int await() throws InterruptedException, BrokenBarrierException {
try {
//委托给dowait
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen;
}
}
/**
* Main barrier code, covering the various policies.
*/
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
//获取线程代
final Generation g = generation;
//如果屏障点破位,则抛出BrokenBarrierException
if (g.broken)
throw new BrokenBarrierException();
//如果线程中断,则设置屏障点破位,重置count为parties,
//唤醒所有在屏障点,等待的线程,抛出中断异常
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
//共享锁数量,自减
int index = --count;
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
//如果所有线程达到屏障点,则执行action
command.run();
ranAction = true;
//创建一下代
nextGeneration();
//返回0,屏障点解除
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
//自旋,直到所有线程到达屏障点,当前代broken,中断,或超时
for (;;) {
try {
//非超时等待await,否则awaitNanos
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
if (timed && nanos <= 0L) {
//如果超时,解除屏障点
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
小节:
线程到达屏障点时,首先检查线程代,有没有broken,如果broken,
则抛出BrokenBarrierException,如果线程中断,则当前代broken,
重置共享锁状态,唤醒所有等待线程。如果上述条件不满足,则释放
count,判断是否当前代线程,是否都到达屏障点,如果是,判断action
是否为null,不为null,则执行action;当释放count,当前代线程,仍有在执行的,
自旋等待屏障点条件trip,如果是超时等待,则判断时间是否超时,超时则breakBarrier。
再看
public int await(long timeout, TimeUnit unit) throws InterruptedException, BrokenBarrierException, TimeoutException { return dowait(true, unit.toNanos(timeout)); }
与await基本相同,都是委托给dowait
/** * Returns the number of parties required to trip this barrier. * * @return the number of parties required to trip this barrier */ public int getParties() { return parties; } /** * Queries if this barrier is in a broken state. * * @return {@code true} if one or more parties broke out of this * barrier due to interruption or timeout since * construction or the last reset, or a barrier action * failed due to an exception; {@code false} otherwise. */ public boolean isBroken() { final ReentrantLock lock = this.lock; lock.lock(); try { return generation.broken; } finally { lock.unlock(); } } /** * Resets the barrier to its initial state. If any parties are * currently waiting at the barrier, they will return with a * {@link BrokenBarrierException}. Note that resets [i]after[/i] * a breakage has occurred for other reasons can be complicated to * carry out; threads need to re-synchronize in some other way, * and choose one to perform the reset. It may be preferable to * instead create a new barrier for subsequent use. */ public void reset() { final ReentrantLock lock = this.lock; lock.lock(); try { breakBarrier(); // break the current generation nextGeneration(); // start a new generation } finally { lock.unlock(); } } /** * Returns the number of parties currently waiting at the barrier. * This method is primarily useful for debugging and assertions. *返回在屏障点等待线程数 * @return the number of parties currently blocked in {@link #await} */ public int getNumberWaiting() { final ReentrantLock lock = this.lock; lock.lock(); try { return parties - count; } finally { lock.unlock(); } }
总结:
屏障点思想,当每个线程完成任务时,自旋等待条件Condition trip,释放共享锁,count减1;当线程代的最后一个线程到达屏障点时,唤醒线程代中所有等待的线程,
如果有action,执行action,然后创建下一代线程。如果在线程代未结束之前,有等待线程中断或超时,则结束当前代,唤醒所有等待线程,重置count为parties。