CyclicBarrier详解

阅读更多
AtomicInteger解析: http://donald-draper.iteye.com/blog/2359555
锁持有者管理器AbstractOwnableSynchronizer: http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport: http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态: http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解: http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解: http://donald-draper.iteye.com/blog/2360411
CountDownLatch使用场景: http://donald-draper.iteye.com/blog/2348106
CountDownLatch详解: http://donald-draper.iteye.com/blog/2360597

package java.util.concurrent;
import java.util.concurrent.locks.*;

/**
 * A synchronization aid that allows a set of threads to all wait for
 * each other to reach a common barrier point.  CyclicBarriers are
 * useful in programs involving a fixed sized party of threads that
 * must occasionally wait for each other. The barrier is called
 * [i]cyclic[/i] because it can be re-used after the waiting threads
 * are released.
 *
 同步工具CyclicBarrier,一个集合线程,等待每一个线程达到共同的屏障点。
CyclicBarriers对一个复杂的线程集合必须互相等待完成任务,场景非常有用。
同步工具的屏障可以循环利用,因为在所有等待线程释放锁时,他可以被重新使用。


 * 

A CyclicBarrier supports an optional {@link Runnable} command * that is run once per barrier point, after the last thread in the party * arrives, but before any threads are released. * This [i]barrier action[/i] is useful * for updating shared-state before any of the parties continue. * CyclicBarrier的构造函数中,有一个带Runnable,在所有线程到达屏障点,并且共享锁没有完全释放, 这个功能,对于在其他线程继续执行任务前,更新共享状态非常有用。 *

Sample usage: Here is an example of * using a barrier in a parallel decomposition design: *

 简单的一个实例用,在并行的分解任务中,使用barrier
 * class Solver {
 *   final int N;
 *   final float[][] data;
 *   final CyclicBarrier barrier;
 *
 *   class Worker implements Runnable {
 *     int myRow;
 *     Worker(int row) { myRow = row; }
 *     public void run() {
 *       while (!done()) {
 *         processRow(myRow);
 *
 *         try {
 *           barrier.await();
 *         } catch (InterruptedException ex) {
 *           return;
 *         } catch (BrokenBarrierException ex) {
 *           return;
 *         }
 *       }
 *     }
 *   }
 *
 *   public Solver(float[][] matrix) {
 *     data = matrix;
 *     N = matrix.length;
 *     barrier = new CyclicBarrier(N,
 *                                 new Runnable() {
 *                                   public void run() {
 *                                     mergeRows(...);
 *                                   }
 *                                 });
 *     for (int i = 0; i < N; ++i)
 *       new Thread(new Worker(i)).start();
 *
 *     waitUntilDone();
 *   }
 * }
 * 
* Here, each worker thread processes a row of the matrix then waits at the * barrier until all rows have been processed. When all rows are processed * the supplied {@link Runnable} barrier action is executed and merges the * rows. If the merger * determines that a solution has been found then done() will return * true and each worker will terminate. 上述实例,描述的每个线程处理矩阵的每一行数据,当线程处理完一行数据时,等待其他线程处理完各自 的一行数据。当所有的线程处理完各自行数据时,屏障点线程Runnable,执行合并矩阵的行数据。 当屏障点线程Runnable,决定执行合并是,每个线程的done函数返回true,结束每个线程工作。 *

If the barrier action does not rely on the parties being suspended when * it is executed, then any of the threads in the party could execute that * action when it is released. To facilitate this, each invocation of * {@link #await} returns the arrival index of that thread at the barrier. * You can then choose which thread should execute the barrier action, for * example: 屏障点action动作线程的执行,不能依赖于组线程中将要暂定的线程,分组中的每一个线程,都可以 执行action,在共享锁被释放之前。为了优化action的执行,我们可以利用,在每个线程调用await方法时, 返回线程到达屏障点的index,来决定,那个线程执行屏障动作。 *

  if (barrier.await() == 0) {
         //最后一个到达屏障点的线程,执行屏障action
 *     // log the completion of this iteration
 *   }
* *

The CyclicBarrier uses an all-or-none breakage model * for failed synchronization attempts: If a thread leaves a barrier * point prematurely because of interruption, failure, or timeout, all * other threads waiting at that barrier point will also leave * abnormally via {@link BrokenBarrierException} (or * {@link InterruptedException} if they too were interrupted at about * the same time). * CyclicBarrier对于失败同步的尝试,用all-or-none breakage model: 如果一个线程,因为中断,失败,超时,永久的离开屏障点,那么其他在屏障点等待的线程, 通过BrokenBarrierException,abnormally离开。 *

Memory consistency effects: Actions in a thread prior to calling * {@code await()} * [url=package-summary.html#MemoryVisibility]happen-before[/url] * actions that are part of the barrier action, which in turn * happen-before actions following a successful return from the * corresponding {@code await()} in other threads. * 内存一致性:actions优先call await函数,这个基于内存可见机制-happen-before法则。 屏障点的分组线程,返回happen-before,协调分组线程工作的线程,await的成功返回。 * @since 1.5 * @see CountDownLatch * * @author Doug Lea */ public class CyclicBarrier { /** * Each use of the barrier is represented as a generation instance. * The generation changes whenever the barrier is tripped, or * is reset. There can be many generations associated with threads * using the barrier - due to the non-deterministic way the lock * may be allocated to waiting threads - but only one of these * can be active at a time (the one to which count applies) * and all the rest are either broken or tripped. * There need not be an active generation if there has been a break * but no subsequent reset. */ 每次屏障点,表示一代实例。当屏障点被打开或者重置时,generation将会改变。 由于锁以不确定的方式,分配给等待线程,线程可以多代屏障点的方式,使用barrier。 如果线程组存在break,并且没有reset,则不需要激活一代。 Generation可以这么理解,当有线程有多个分组,一个分组执行完,执行下一组;每一组 我们可以理解为Generation,当线程组出现break,且没有reset,则Generation不会被激活。 private static class Generation { boolean broken = false; } /** The lock for guarding barrier entry */ 屏障点保护锁 private final ReentrantLock lock = new ReentrantLock(); /** Condition to wait on until tripped */ 条件等待,直到所有的线程打开锁, private final Condition trip = lock.newCondition(); /** The number of parties */ 共享锁数量 private final int parties; /* The command to run when tripped */ 障碍点执行的命令 private final Runnable barrierCommand; /** The current generation */ 当前代 private Generation generation = new Generation(); /** * Number of parties still waiting. Counts down from parties to 0 * on each generation. It is reset to parties on each new * generation or when broken. */ 表示分组中,还有多少个在等待。在每一代,count从parties to 0。 在每一次创建新生代中或broken时,count重置为parties private int count; }



先看构造:
 
/**
     * Creates a new CyclicBarrier that will trip when the
     * given number of parties (threads) are waiting upon it, and which
     * will execute the given barrier action when the barrier is tripped,
     * performed by the last thread entering the barrier.
     *常见一个屏障点,当所有parties线程在等待时,将会打开,同时最后一个进入
     屏障点的线程,将会执行barrierAction。
     * @param parties the number of threads that must invoke {@link #await}
     *        before the barrier is tripped
     * @param barrierAction the command to execute when the barrier is
     *        tripped, or {@code null} if there is no action
     * @throws IllegalArgumentException if {@code parties} is less than 1
     */
    public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }

    /**
     * Creates a new CyclicBarrier that will trip when the
     * given number of parties (threads) are waiting upon it, and
     * does not perform a predefined action when the barrier is tripped.
     *
     * @param parties the number of threads that must invoke {@link #await}
     *        before the barrier is tripped
     * @throws IllegalArgumentException if {@code parties} is less than 1
     */
    public CyclicBarrier(int parties) {
        this(parties, null);
    }

线程代broken处理
     
 /**
     * Sets current barrier generation as broken and wakes up everyone.
     * Called only while holding lock.
     */
    当线程持有锁,设置当前线程代broken,唤醒当前代线程
    private void breakBarrier() {
        //
        generation.broken = true;
	//重置共享锁状态
        count = parties;
	//唤醒所有在屏障点,等待的线程
        trip.signalAll();
    }

创建下一代
   
  /**
     * Updates state on barrier trip and wakes up everyone.
     * Called only while holding lock.
     */
     线程持有锁,更新屏障点状态,唤醒所有等待,线程
    private void nextGeneration() {
        // signal completion of last generation
	//唤醒上一代,完成的线程
        trip.signalAll();
        // set up next generation
	//重置共享锁状态
        count = parties;
	//创建下一代
        generation = new Generation();
    }
}

我们来看屏障等待

/**
     * Waits until all {@linkplain #getParties parties} have invoked
     * await on this barrier.
     * 等待所享有的线程到达屏障点
     * 

If the current thread is not the last to arrive then it is * disabled for thread scheduling purposes and lies dormant until * one of the following things happens: 当线程不是最后一个到达屏障点,线程将会不会被调度,直到以下情况发生 * [list] *

  • The last thread arrives; or最后一个线程到达屏障点 *
  • Some other thread {@linkplain Thread#interrupt interrupts} * the current thread; or其他线程中断当前线程 *
  • Some other thread {@linkplain Thread#interrupt interrupts} * one of the other waiting threads; or其他等待线程,被中断 *
  • Some other thread times out while waiting for barrier; or *
  • Some other thread invokes {@link #reset} on this barrier. * [/list] *一些线程等待屏障点超时,或其他以下线程调用reset *

    If the current thread: * [list] *

  • has its interrupted status set on entry to this method; or *
  • is {@linkplain Thread#interrupt interrupted} while waiting * [/list] * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. 当前线程带着中断状态,在等待屏障点,当中断异常抛出时,当前线程中断消除。 *

    If the barrier is {@link #reset} while any thread is waiting, * or if the barrier {@linkplain #isBroken is broken} when * await is invoked, or while any thread is waiting, then * {@link BrokenBarrierException} is thrown. *当其他线程在等待,如果屏障点被重置,或broke,则抛出BrokenBarrierException *

    If any thread is {@linkplain Thread#interrupt interrupted} while waiting, * then all other waiting threads will throw * {@link BrokenBarrierException} and the barrier is placed in the broken * state. *在等待的过程中,如果其他线程中断,则抛出BrokenBarrierException,屏障点 设置为broken状态。 *

    If the current thread is the last thread to arrive, and a * non-null barrier action was supplied in the constructor, then the * current thread runs the action before allowing the other threads to * continue. 如果当前线程,是最后一个到达屏障点的,如果屏障点动作线程不为null, 则执行action,在下一代线程组执行任务前。 * If an exception occurs during the barrier action then that exception * will be propagated in the current thread and the barrier is placed in * the broken state. *如果在执行action的过程中,出现异常,则当前线程将会抛出异常,屏障点处于破位状态 * @return the arrival index of the current thread, where index * {@link #getParties()} - 1 indicates the first * to arrive and zero indicates the last to arrive * @throws InterruptedException if the current thread was interrupted * while waiting * @throws BrokenBarrierException if [i]another[/i] thread was * interrupted or timed out while the current thread was * waiting, or the barrier was reset, or the barrier was * broken when {@code await} was called, or the barrier * action (if present) failed due an exception. */ public int await() throws InterruptedException, BrokenBarrierException { try { //委托给dowait return dowait(false, 0L); } catch (TimeoutException toe) { throw new Error(toe); // cannot happen; } } /** * Main barrier code, covering the various policies. */ private int dowait(boolean timed, long nanos) throws InterruptedException, BrokenBarrierException, TimeoutException { final ReentrantLock lock = this.lock; lock.lock(); try { //获取线程代 final Generation g = generation; //如果屏障点破位,则抛出BrokenBarrierException if (g.broken) throw new BrokenBarrierException(); //如果线程中断,则设置屏障点破位,重置count为parties, //唤醒所有在屏障点,等待的线程,抛出中断异常 if (Thread.interrupted()) { breakBarrier(); throw new InterruptedException(); } //共享锁数量,自减 int index = --count; if (index == 0) { // tripped boolean ranAction = false; try { final Runnable command = barrierCommand; if (command != null) //如果所有线程达到屏障点,则执行action command.run(); ranAction = true; //创建一下代 nextGeneration(); //返回0,屏障点解除 return 0; } finally { if (!ranAction) breakBarrier(); } } // loop until tripped, broken, interrupted, or timed out //自旋,直到所有线程到达屏障点,当前代broken,中断,或超时 for (;;) { try { //非超时等待await,否则awaitNanos if (!timed) trip.await(); else if (nanos > 0L) nanos = trip.awaitNanos(nanos); } catch (InterruptedException ie) { if (g == generation && ! g.broken) { breakBarrier(); throw ie; } else { // We're about to finish waiting even if we had not // been interrupted, so this interrupt is deemed to // "belong" to subsequent execution. Thread.currentThread().interrupt(); } } if (g.broken) throw new BrokenBarrierException(); if (g != generation) return index; if (timed && nanos <= 0L) { //如果超时,解除屏障点 breakBarrier(); throw new TimeoutException(); } } } finally { lock.unlock(); } }


  • 小节:
    线程到达屏障点时,首先检查线程代,有没有broken,如果broken,
    则抛出BrokenBarrierException,如果线程中断,则当前代broken,
    重置共享锁状态,唤醒所有等待线程。如果上述条件不满足,则释放
    count,判断是否当前代线程,是否都到达屏障点,如果是,判断action
    是否为null,不为null,则执行action;当释放count,当前代线程,仍有在执行的,
    自旋等待屏障点条件trip,如果是超时等待,则判断时间是否超时,超时则breakBarrier。

    再看
     public int await(long timeout, TimeUnit unit)
            throws InterruptedException,
                   BrokenBarrierException,
                   TimeoutException {
            return dowait(true, unit.toNanos(timeout));
        }

    与await基本相同,都是委托给dowait
    /**
         * Returns the number of parties required to trip this barrier.
         *
         * @return the number of parties required to trip this barrier
         */
      public int getParties() {
            return parties;
        }
       /**
         * Queries if this barrier is in a broken state.
         *
         * @return {@code true} if one or more parties broke out of this
         *         barrier due to interruption or timeout since
         *         construction or the last reset, or a barrier action
         *         failed due to an exception; {@code false} otherwise.
         */
        public boolean isBroken() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return generation.broken;
            } finally {
                lock.unlock();
            }
        }
         /**
         * Resets the barrier to its initial state.  If any parties are
         * currently waiting at the barrier, they will return with a
         * {@link BrokenBarrierException}. Note that resets [i]after[/i]
         * a breakage has occurred for other reasons can be complicated to
         * carry out; threads need to re-synchronize in some other way,
         * and choose one to perform the reset.  It may be preferable to
         * instead create a new barrier for subsequent use.
         */
        
        public void reset() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                breakBarrier();   // break the current generation
                nextGeneration(); // start a new generation
            } finally {
                lock.unlock();
            }
        }
         /**
         * Returns the number of parties currently waiting at the barrier.
         * This method is primarily useful for debugging and assertions.
         *返回在屏障点等待线程数
         * @return the number of parties currently blocked in {@link #await}
         */
        public int getNumberWaiting() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return parties - count;
            } finally {
                lock.unlock();
            }
        }

    总结:
    屏障点思想,当每个线程完成任务时,自旋等待条件Condition trip,释放共享锁,count减1;当线程代的最后一个线程到达屏障点时,唤醒线程代中所有等待的线程,
    如果有action,执行action,然后创建下一代线程。如果在线程代未结束之前,有等待线程中断或超时,则结束当前代,唤醒所有等待线程,重置count为parties。

    你可能感兴趣的:(java,juc)