java 队列

队列简述

Queue: 基本上,一个队列就是一个先入先出(FIFO)的数据结构
Queue接口与List、Set同一级别,都是继承了Collection接口。LinkedList实现了Deque接 口。
在并发队列上JDK提供了两套实现,一个是以ConcurrentLinkedQueue为代表的高性能队列非阻塞,一个是以BlockingQueue接口为代表的阻塞队列,无论哪种都继承自Queue

阻塞队列与非阻塞队列

阻塞队列与普通队列的区别在于,当队列是空的时,从队列中获取元素的操作将会被阻塞,或者当队列是满时,往队列里添加元素的操作会被阻塞。试图从空的阻塞队列中获取元素的线程将会被阻塞,直到其他的线程往空的队列插入新的元素。同样,试图往已满的阻塞队列中添加新元素的线程同样也会被阻塞,直到其他的线程使队列重新变得空闲起来,如从队列中移除一个或者多个元素,或者完全清空队列


(图片来自网络https://www.cnblogs.com/lemon...)

非阻塞队列

没有实现的阻塞接口的LinkedList: 实现了java.util.Queue接口和java.util.AbstractQueue接口

内置的不阻塞队列: PriorityQueue 和 ConcurrentLinkedQueue

PriorityQueue 和 ConcurrentLinkedQueue 类在 Collection Framework 中加入两个具体集合实现。

PriorityQueue 类实质上维护了一个有序列表。加入到 Queue 中的元素根据它们的天然排序(通过其 java.util.Comparable 实现)或者根据传递给构造函数的 java.util.Comparator 实现来定位。

ConcurrentLinkedQueue 是基于链接节点的、线程安全的队列。并发访问不需要同步。因为它在队列的尾部添加元素并从头部删除它们,所以只要不需要知道队列的大小,ConcurrentLinkedQueue 对公共集合的共享访问就可以工作得很好。收集关于队列大小的信息会很慢,需要遍历队列。

ConcurrentLinkedQueue : 是一个适用于高并发场景下的队列,通过无锁的方式,实现
了高并发状态下的高性能,通常ConcurrentLinkedQueue性能好于BlockingQueue.它
是一个基于链接节点的无界线程安全队列。该队列的元素遵循先进先出的原则。头是最先
加入的,尾是最近加入的,该队列不允许null元素。

ConcurrentLinkedQueue重要方法:
add 和offer() 都是加入元素的方法(在ConcurrentLinkedQueue中这俩个方法没有任何区别)
poll() 和peek() 都是取头元素节点,区别在于前者会删除元素,后者不会。

ConcurrentLinkedQueue例子

@RequestMapping("test-clq")
    public void testConcurrentLinkedQueue() {
        ConcurrentLinkedDeque q = new ConcurrentLinkedDeque<>();
        q.offer("Java");
        q.offer("C#");
        q.offer("Javascript");
        q.offer("Python");
        // 从头获取元素,删除该元素
        System.out.println(q.poll());
        // 从头获取元素,不刪除该元素
        System.out.println(q.peek());
        // 获取总长度
        System.out.println(q.size());
        // 遍历
        for (String s : q) {
            System.out.println(s);
        }
    }

结果:
Java
C#
3
C#
Javascript
Python

BlockingQueue

阻塞队列,顾名思义,首先它是一个队列,通过一个共享的队列,可以使得数据由队列的一端输入,从另外一端输出;
常用的队列主要有以下两种:(当然通过不同的实现方式,还可以延伸出很多不同类型的队列,DelayQueue就是其中的一种)

  • 先进先出(FIFO):先插入的队列的元素也最先出队列,类似于排队的功能。从某种程度上来说这种队列也体现了一种公平性。
  • 后进先出(LIFO):后插入队列的元素最先出队列,这种队列优先处理最近发生的事件。

多线程环境中,通过队列可以很容易实现数据共享,比如经典的“生产者”和“消费者”模型中,通过队列可以很便利地实现两者之间的数据共享。假设我们有若干生产者线程,另外又有若干个消费者线程。如果生产者线程需要把准备好的数据共享给消费者线程,利用队列的方式来传递数据,就可以很方便地解决他们之间的数据共享问题。但如果生产者和消费者在某个时间段内,万一发生数据处理速度不匹配的情况呢?理想情况下,如果生产者产出数据的速度大于消费者消费的速度,并且当生产出来的数据累积到一定程度的时候,那么生产者必须暂停等待一下(阻塞生产者线程),以便等待消费者线程把累积的数据处理完毕,反之亦然。然而,在concurrent包发布以前,在多线程环境下,我们每个程序员都必须去自己控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。好在此时,强大的concurrent包横空出世了,而他也给我们带来了强大的BlockingQueue。(在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤醒)

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:
在队列为空时,获取元素的线程会等待队列变为非空。
当队列满时,存储元素的线程会等待队列可用。
阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。
BlockingQueue即阻塞队列,从阻塞这个词可以看出,在某些情况下对阻塞队列的访问可能会造成阻塞。被阻塞的情况主要有如下两种:

  1. 当队列满了的时候进行入队列操作
  2. 当队列空了的时候进行出队列操作

因此,当一个线程试图对一个已经满了的队列进行入队列操作时,它将会被阻塞,除非有另一个线程做了出队列操作;同样,当一个线程试图对一个空队列进行出队列操作时,它将会被阻塞,除非有另一个线程进行了入队列操作。
在Java中,BlockingQueue的接口位于java.util.concurrent 包中(在Java5版本开始提供),由上面介绍的阻塞队列的特性可知,阻塞队列是线程安全的。
在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输”数据的问题。通过这些高效并且线程安全的队列类,为我们快速搭建高质量的多线程程序带来极大的便利。

下表显示了jdk1.5中的阻塞队列的操作:

  add 增加一个元索 如果队列已满,则抛出一个IIIegaISlabEepeplian异常
  remove 移除并返回队列头部的元素 如果队列为空,则抛出一个NoSuchElementException异常
  element 返回队列头部的元素 如果队列为空,则抛出一个NoSuchElementException异常
  offer 添加一个元素并返回true 如果队列已满,则返回false
  poll 移除并返问队列头部的元素 如果队列为空,则返回null
  peek 返回队列头部的元素 如果队列为空,则返回null
  put 添加一个元素 如果队列满,则阻塞
  take 移除并返回队列头部的元素 如果队列为空,则阻塞

阻塞队列操作:
aad、remove和element操作在你试图为一个已满的队列增加元素或从空队列取得元素时 抛出异常
offer、poll、peek方法。这些方法在无法完成任务时,只是给出一个出错提示而不会抛出异常
阻塞操作put和take。put方法在队列满时阻塞,take方法在队列空时阻塞。

ArrayBlockingQueue

ArrayBlockingQueue是一个有边界的阻塞队列,它的内部实现是一个数组。有边界的意思是它的容量是有限的,我们必须在其初始化的时候指定它的容量大小,容量大小一旦指定就不可改变。
ArrayBlockingQueue是以先进先出的方式存储数据,最新插入的对象是尾部,最新移出的对象是头部

LinkedBlockingQueue

LinkedBlockingQueue阻塞队列大小的配置是可选的,如果我们初始化时指定一个大小,它就是有边界的,如果不指定,它就是无边界的。说是无边界,其实是采用了默认大小为Integer.MAX_VALUE的容量 。它的内部实现是一个链表。
和ArrayBlockingQueue一样,LinkedBlockingQueue 也是以先进先出的方式存储数据,最新插入的对象是尾部,最新移出的对象是头部。

PriorityBlockingQueue

PriorityBlockingQueue是一个没有边界的队列,它的排序规则和 java.util.PriorityQueue一样。需要注意,PriorityBlockingQueue中允许插入null对象。
所有插入PriorityBlockingQueue的对象必须实现 java.lang.Comparable接口,队列优先级的排序规则就是按照我们对这个接口的实现来定义的。
另外,我们可以从PriorityBlockingQueue获得一个迭代器Iterator,但这个迭代器并不保证按照优先级顺序进行迭代。

SynchronousQueue

SynchronousQueue队列内部仅允许容纳一个元素。当一个线程插入一个元素后会被阻塞,除非这个元素被另一个线程消费

DelayQueue

(基于PriorityQueue来实现的)是一个存放Delayed 元素的无界阻塞队列,只有在延迟期满时才能从中提取元素。该队列的头部是延迟期满后保存时间最长的 Delayed 元素。如果延迟都还没有期满,则队列没有头部,并且poll将返回null。当一个元素的 getDelay(TimeUnit.NANOSECONDS) 方法返回一个小于或等于零的值时,则出现期满,poll就以移除这个元素了。此队列不允许使用 null 元素。

使用BlockingQueue模拟生产者与消费者

  • 生产者
public class ProducerThread implements Runnable {
    private BlockingQueue queue;
    private AtomicInteger count = new AtomicInteger();
    private volatile boolean FLAG = true;

    public ProducerThread(BlockingQueue queue) {
        this.queue = queue;
    }

    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName() + "生产者开始启动....");
        while (FLAG) {
            String data = count.incrementAndGet() + "";
            try {
                boolean offer = queue.offer(data, 2, TimeUnit.SECONDS);
                if (offer) {
                    System.out.println(Thread.currentThread().getName() + ",生产队列" + data + "成功..");
                } else {
                    System.out.println(Thread.currentThread().getName() + ",生产队列" + data + "失败..");
                }
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println(Thread.currentThread().getName() + ",生产者线程停止...");
    }

    public void stop() {
        this.FLAG = false;
    }

}
  • 消费者
public class ConsumerThread implements Runnable {
    private volatile boolean FLAG = true;
    private BlockingQueue blockingQueue;

    public ConsumerThread(BlockingQueue blockingQueue) {
        this.blockingQueue = blockingQueue;
    }

    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName() + "消费者开始启动....");
        while (FLAG) {
            try {
                String data = blockingQueue.poll(2, TimeUnit.SECONDS);
                if (data == null || data == "") {
                    FLAG = false;
                    System.out.println("消费者超过2秒时间未获取到消息.");
                    return;
                }
                System.out.println("消费者获取到队列信息成功,data:" + data);

            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }

}
  • 请求
@RequestMapping("test-blockingQueue")
    public void testBlockingQueue() {
        LinkedBlockingDeque blockingDeque = new LinkedBlockingDeque<>(1);
        ProducerThread producerThread = new ProducerThread(blockingDeque);
        ConsumerThread consumerThread = new ConsumerThread(blockingDeque);
        Thread t1 = new Thread(producerThread, "生产者");
        Thread t2 = new Thread(consumerThread, "消费者");
        t1.start();
        t2.start();

        // 10秒后停止线程
        try {
            Thread.sleep(10 * 1000);
            producerThread.stop();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

    }
  • 结果

消费者消费者开始启动....
生产者生产者开始启动....
生产者,生产队列1成功..
消费者获取到队列信息成功,data:1
生产者,生产队列2成功..
消费者获取到队列信息成功,data:2
生产者,生产队列3成功..
消费者获取到队列信息成功,data:3
生产者,生产队列4成功..
消费者获取到队列信息成功,data:4
生产者,生产队列5成功..
消费者获取到队列信息成功,data:5
生产者,生产队列6成功..
消费者获取到队列信息成功,data:6
生产者,生产队列7成功..
消费者获取到队列信息成功,data:7
生产者,生产队列8成功..
消费者获取到队列信息成功,data:8
生产者,生产队列9成功..
消费者获取到队列信息成功,data:9
生产者,生产队列10成功..
消费者获取到队列信息成功,data:10
生产者,生产者线程停止...
消费者超过2秒时间未获取到消息.

你可能感兴趣的:(多线程,java)