消息队列的使用场景是怎样的?
新手也能看懂,消息队列其实很简单
消息队列设计精要
一、例一
假设用户在你的软件中注册,服务端收到用户的注册请求后,它会做这些操作:
- 校验用户名等信息,如果没问题会在数据库中添加一个用户记录
- 如果是用邮箱注册会给你发送一封注册成功的邮件,手机注册则会发送一条短信
- 分析用户的个人信息,以便将来向他推荐一些志同道合的人,或向那些人推荐他
- 发送给用户一个包含操作指南的系统通知
- 等等……
但是对于用户来说,注册功能实际只需要第一步,只要服务端将他的账户信息存到数据库中他便可以登录上去做他想做的事情了。至于其他的事情,非要在这一次请求中全部完成么?值得用户浪费时间等你处理这些对他来说无关紧要的事情么?所以实际当第一步做完后,服务端就可以把其他的操作放入对应的消息队列中然后马上返回用户结果,由消息队列异步的进行这些操作。
或者还有一种情况,同时有大量用户注册你的软件,再高并发情况下注册请求开始出现一些问题,例如邮件接口承受不住,或是分析信息时的大量计算使cpu满载,这将会出现虽然用户数据记录很快的添加到数据库中了,但是却卡在发邮件或分析信息时的情况,导致请求的响应时间大幅增长,甚至出现超时,这就有点不划算了。面对这种情况一般也是将这些操作放入消息队列(生产者消费者模型),消息队列慢慢的进行处理,同时可以很快的完成注册请求,不会影响用户使用其他功能。
所以在软件的正常功能开发中,并不需要去刻意的寻找消息队列的使用场景,而是当出现性能瓶颈时,去查看业务逻辑是否存在可以异步处理的耗时操作,如果存在的话便可以引入消息队列来解决。否则盲目的使用消息队列可能会增加维护和开发的成本却无法得到可观的性能提升,那就得不偿失了。
二、例二
小红是小明的姐姐。小红希望小明多读书,常寻找好书给小明看,之前的方式是这样:小红问小明什么时候有空,把书给小明送去,并亲眼监督小明读完书才走。久而久之,两人都觉得麻烦。后来的方式改成了:小红对小明说「我放到书架上的书你都要看」,然后小红每次发现不错的书都放到书架上,小明则看到书架上有书就拿下来看。
书架就是一个消息队列,小红是生产者,小明是消费者。这带来的好处有:
- 1.小红想给小明书的时候,不必问小明什么时候有空,亲手把书交给他了,小红只把书放到书架上就行
了。这样小红小明的时间都更自由。 - 2.小红相信小明的读书自觉和读书能力,不必亲眼观察小明的读书过程,小红只要做一个放书的动作,很
节省时间。 - 3.当明天有另一个爱读书的小伙伴小强加入,小红仍旧只需要把书放到书架上,小明和小强从书架上取书
即可(唔,姑且设定成多个人取一本书可以每人取走一本吧,可能是拷贝电子书或复印,暂不考虑版权问
题)。 - 4.书架上的书放在那里,小明阅读速度快就早点看完,阅读速度慢就晚点看完,没关系,比起小红把书递
给小明并监督小明读完的方式,小明的压力会小一些。
这就是消息队列的四大好处:
1.解耦
每个成员不必受其他成员影响,可以更独立自主,只通过一个简单的容器来联系。小红甚至可以不知道从书架上取书的是谁,小明也可以不知道往书架上放书的人是谁,在他们眼里,都只有书架,没有对方。毫无疑问,与一个简单的容器打交道,比与复杂的人打交道容易一万倍,小红小明可以自由自在地追求各自的人生。
2.提速
小红选择相信「把书放到书架上,别的我不问」,为自己节省了大量时间。小红很忙,只能抽出五分钟时间,但这时间足够把书放到书架上了。
3.广播
小红只需要劳动一次,就可以让多个小伙伴有书可读,这大大地节省了她的时间,也让新的小伙伴的加入成本很低。
4.削峰
假设小明读书很慢,如果采用小红每给一本书都监督小明读完的方式,小明有压力,小红也不耐烦。反正小红给书的频率也不稳定,如果今明两天连给了五本,之后隔三个月才又给一本,那小明只要在三个月内从书架上陆续取走五本书读完就行了,压力就不那么大了。
当然,使用消息队列也有其成本:
1.引入复杂度
毫无疑问,「书架」这东西是多出来的,需要地方放它,还需要防盗。
2.暂时的不一致性
假如妈妈问小红「小明最近读了什么书」,在以前的方式里,小红因为亲眼监督小明读完书了,可以底气十足地告诉妈妈,但新的方式里,小红回答妈妈之后会心想「小明应该会很快看完吧……」这中间存在着一段「妈妈认为小明看了某书,而小明其实还没看」的时期,当然,小明最终的阅读状态与妈妈的认知会是一致的,这就是所谓的「最终一致性」。
那么,该使用消息队列的情况需要满足什么条件呢?
1.生产者不需要从消费者处获得反馈
引入消息队列之前的直接调用,其接口的返回值应该为空,这才让明明下层的动作还没做,上层却当成动作做完了继续往后走——即所谓异步——成为了可能。小红放完书之后小明到底看了没有,小红根本不问,她默认他是看了,否则就只能用原来的方法监督到看完了。
2.容许短暂的不一致性
妈妈可能会发现「有时候据说小明看了某书,但事实上他还没看」,只要妈妈满意于「反正他最后看了就行」,异步处理就没问题。如果妈妈对这情况不能容忍,对小红大发雷霆,小红也就不敢用书架方式了。
3.确实是用了有效果
即解耦、提速、广播、削峰这些方面的收益,超过放置书架、监控书架这些成本。否则如果是盲目照搬,「听说老赵家买了书架,咱们家也买一个」,买回来却没什么用,只是让步骤变多了,还不如直接把书递给对方呢,那就不对了。
三、例三 何时需要消息队列
当你需要使用消息队列时,首先需要考虑它的必要性。可以使用mq的场景有很多,最常用的几种,是做业务解耦/最终一致性/广播/错峰流控等。反之,如果需要强一致性,关注业务逻辑的处理结果,则RPC显得更为合适。
1.解耦
解耦是消息队列要解决的最本质问题。所谓解耦,简单点讲就是一个事务,只关心核心的流程。而需要依赖其他系统但不那么重要的事情,有通知即可,无需等待结果。换句话说,基于消息的模型,关心的是“通知”,而非“处理”。
比如在美团旅游,我们有一个产品中心,产品中心上游对接的是主站、移动后台、旅游供应链等各个数据源;下游对接的是筛选系统、API系统等展示系统。当上游的数据发生变更的时候,如果不使用消息系统,势必要调用我们的接口来更新数据,就特别依赖产品中心接口的稳定性和处理能力。但其实,作为旅游的产品中心,也许只有对于旅游自建供应链,产品中心更新成功才是他们关心的事情。而对于团购等外部系统,产品中心更新成功也好、失败也罢,并不是他们的职责所在。他们只需要保证在信息变更的时候通知到我们就好了。
而我们的下游,可能有更新索引、刷新缓存等一系列需求。对于产品中心来说,这也不是我们的职责所在。说白了,如果他们定时来拉取数据,也能保证数据的更新,只是实时性没有那么强。但使用接口方式去更新他们的数据,显然对于产品中心来说太过于“重量级”了,只需要发布一个产品ID变更的通知,由下游系统来处理,可能更为合理。
再举一个例子,对于我们的订单系统,订单最终支付成功之后可能需要给用户发送短信积分什么的,但其实这已经不是我们系统的核心流程了。如果外部系统速度偏慢(比如短信网关速度不好),那么主流程的时间会加长很多,用户肯定不希望点击支付过好几分钟才看到结果。那么我们只需要通知短信系统“我们支付成功了”,不一定非要等待它处理完成。
2.最终一致性
最终一致性指的是两个系统的状态保持一致,要么都成功,要么都失败。当然有个时间限制,理论上越快越好,但实际上在各种异常的情况下,可能会有一定延迟达到最终一致状态,但最后两个系统的状态是一样的。
业界有一些为“最终一致性”而生的消息队列,如Notify(阿里)、QMQ(去哪儿)等,其设计初衷,就是为了交易系统中的高可靠通知。
以一个银行的转账过程来理解最终一致性,转账的需求很简单,如果A系统扣钱成功,则B系统加钱一定成功。反之则一起回滚,像什么都没发生一样。然而,这个过程中存在很多可能的意外:
- A扣钱成功,调用B加钱接口失败。
- A扣钱成功,调用B加钱接口虽然成功,但获取最终结果时网络异常引起超时。
- A扣钱成功,B加钱失败,A想回滚扣的钱,但A机器down机。
可见,想把这件看似简单的事真正做成,真的不那么容易。所有跨VM的一致性问题,从技术的角度讲通用的解决方案是:
- 强一致性,分布式事务,但落地太难且成本太高,后文会具体提到。
- 最终一致性,主要是用“记录”和“补偿”的方式。在做所有的不确定的事情之前,先把事情记录下来,然后去做不确定的事情,结果可能是:成功、失败或是不确定,“不确定”(例如超时等)可以等价为失败。成功就可以把记录的东西清理掉了,对于失败和不确定,可以依靠定时任务等方式把所有失败的事情重新搞一遍,直到成功为止。
- 回到刚才的例子,系统在A扣钱成功的情况下,把要给B“通知”这件事记录在库里(为了保证最高的可靠性可以把通知B系统加钱和扣钱成功这两件事维护在一个本地事务里),通知成功则删除这条记录,通知失败或不确定则依靠定时任务补偿性地通知我们,直到我们把状态更新成正确的为止。
- 整个这个模型依然可以基于RPC来做,但可以抽象成一个统一的模型,基于消息队列来做一个“企业总线”。
- 具体来说,本地事务维护业务变化和通知消息,一起落地(失败则一起回滚),然后RPC到达broker,在broker成功落地后,RPC返回成功,本地消息可以删除。否则本地消息一直靠定时任务轮询不断重发,这样就保证了消息可靠落地broker。
- broker往consumer发送消息的过程类似,一直发送消息,直到consumer发送消费成功确认。
- 我们先不理会重复消息的问题,通过两次消息落地加补偿,下游是一定可以收到消息的。然后依赖状态机版本号等方式做判重,更新自己的业务,就实现了最终一致性。
最终一致性不是消息队列的必备特性,但确实可以依靠消息队列来做最终一致性的事情。另外,所有不保证100%不丢消息的消息队列,理论上无法实现最终一致性。好吧,应该说理论上的100%,排除系统严重故障和bug。
像Kafka一类的设计,在设计层面上就有丢消息的可能(比如定时刷盘,如果掉电就会丢消息)。哪怕只丢千分之一的消息,业务也必须用其他的手段来保证结果正确。
3.广播
消息队列的基本功能之一是进行广播。如果没有消息队列,每当一个新的业务方接入,我们都要联调一次新接口。有了消息队列,我们只需要关心消息是否送达了队列,至于谁希望订阅,是下游的事情,无疑极大地减少了开发和联调的工作量。
比如本文开始提到的产品中心发布产品变更的消息,以及景点库很多去重更新的消息,可能“关心”方有很多个,但产品中心和景点库只需要发布变更消息即可,谁关心谁接入。
4.错峰与流控
试想上下游对于事情的处理能力是不同的。比如,Web前端每秒承受上千万的请求,并不是什么神奇的事情,只需要加多一点机器,再搭建一些LVS负载均衡设备和Nginx等即可。但数据库的处理能力却十分有限,即使使用SSD加分库分表,单机的处理能力仍然在万级。由于成本的考虑,我们不能奢求数据库的机器数量追上前端。
这种问题同样存在于系统和系统之间,如短信系统可能由于短板效应,速度卡在网关上(每秒几百次请求),跟前端的并发量不是一个数量级。但用户晚上个半分钟左右收到短信,一般是不会有太大问题的。如果没有消息队列,两个系统之间通过协商、滑动窗口等复杂的方案也不是说不能实现。但系统复杂性指数级增长,势必在上游或者下游做存储,并且要处理定时、拥塞等一系列问题。而且每当有处理能力有差距的时候,都需要单独开发一套逻辑来维护这套逻辑。所以,利用中间系统转储两个系统的通信内容,并在下游系统有能力处理这些消息的时候,再处理这些消息,是一套相对较通用的方式。
5.总结
总而言之,消息队列不是万能的。对于需要强事务保证而且延迟敏感的,RPC是优于消息队列的。
对于一些无关痛痒,或者对于别人非常重要但是对于自己不是那么关心的事情,可以利用消息队列去做。
支持最终一致性的消息队列,能够用来处理延迟不那么敏感的“分布式事务”场景,而且相对于笨重的分布式事务,可能是更优的处理方式。
当上下游系统处理能力存在差距的时候,利用消息队列做一个通用的“漏斗”。在下游有能力处理的时候,再进行分发。
如果下游有很多系统关心你的系统发出的通知的时候,果断地使用消息队列吧。
四、如何设计一个消息队列
我们现在明确了消息队列的使用场景,下一步就是如何设计实现一个消息队列了。
基于消息的系统模型,不一定需要broker(消息队列服务端)。市面上的的Akka(actor模型)、ZeroMQ等,其实都是基于消息的系统设计范式,但是没有broker。
我们之所以要设计一个消息队列,并且配备broker,无外乎要做两件事情:
- 消息的转储,在更合适的时间点投递,或者通过一系列手段辅助消息最终能送达消费机。
- 规范一种范式和通用的模式,以满足解耦、最终一致性、错峰等需求。
- 掰开了揉碎了看,最简单的消息队列可以做成一个消息转发器,把一次RPC做成两次RPC。发送者把消息投递到服务端(以下简称broker),服务端再将消息转发一手到接收端,就是这么简单。
一般来讲,设计消息队列的整体思路是先build一个整体的数据流,例如producer发送给broker,broker发送给consumer,consumer回复消费确认,broker删除/备份消息等。
利用RPC将数据流串起来。然后考虑RPC的高可用性,尽量做到无状态,方便水平扩展。
之后考虑如何承载消息堆积,然后在合适的时机投递消息,而处理堆积的最佳方式,就是存储,存储的选型需要综合考虑性能/可靠性和开发维护成本等诸多因素。
为了实现广播功能,我们必须要维护消费关系,可以利用zk/config server等保存消费关系。
在完成了上述几个功能后,消息队列基本就实现了。然后我们可以考虑一些高级特性,如可靠投递,事务特性,性能优化等。
下面我们会以设计消息队列时重点考虑的模块为主线,穿插灌输一些消息队列的特性实现方法,来具体分析设计实现一个消息队列时的方方面面。
后面参见原文……
五、常见的消息队列对比
golang nsq
NSQ是Go语言编写的,开源的分布式消息队列中间件,其设计的目的是用来大规模地处理每天数以十亿计级别的消息。NSQ 具有分布式和去中心化拓扑结构,该结构具有无单点故障、故障容错、高可用性以及能够保证消息的可靠传递的特征,是一个成熟的、已在大规模生成环境下应用的产品。