- elkai库高效求解旅行商(TSP)问题(Pycharm23.01)
一九天虚
pythontsp问题旅行商问题
技术文档摘要简介本技术文档描述了一个基于elkai库实现的旅行商问题(TSP)求解与可视化工具,用于计算给定城市坐标的最优路径并展示结果。以下是核心功能与技术实现要点:1.核心功能TSP求解:通过elkai库高效求解城市坐标的最优访问顺序,最小化总路径成本。路径可视化:基于Matplotlib绘制路径图,动态标注起点、城市序号及路径走向。结果分析:输出路径总成本(目标值)及城市
- 23.5.15---在python中读取excel表格数据并可视化
多一点灵性
pythonmatplotlib开发语言机器学习
目录1.在python中通过以下代码可以防止运行结果出现中文乱码的情况(如画图时)2.在将excel表格文件中的数据读取出来,并将其中的两列数据作为行列坐标用图画出来2.1设置坐标轴显示的刻度及范围3.在PythonConsole清除运行的控制台数据使用:1.在python中通过以下代码可以防止运行结果出现中文乱码的情况(如画图时)##设置字符集,防止中文乱码importmatplotlibasm
- JuPyter(IPython) Notebooks中使用pip安装Python的模块
weixin_34218890
开发工具python人工智能
问题描述:没有带GPU的电脑,搞深度学习不是耍流氓嘛,我网上看到有个云平台,免费使用了一下,小姐姐很热情。使用过程如下:他们给的接口是Jupyter编辑平台,我就在上面跑了一个小例子。tensorflow和python环境是他们配置好的,不过我的例子中需要导入matplotlib.pylot模块。可是他们没有提供,怎么办呢?网上查了一下啊解决方法:采用如下方法:importpipdefMyPipi
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- python 求向量间内积 和外积
#内积可以描述向量间的投影关系,大小为|a||b|cos⟨a,b⟩:python向量内积求向量长度:importnumpyasnpa=np.asarray([1,1,1])print(np.sqrt(a.dot(a
- python内积 卷积
AI算法网奇
python基础python开发语言
内积就是点乘,卷积先取反。importnumpyasnpbb=[1,2]cc=[2,3]aa=np.dot(bb,cc)print(aa)dd=np.convolve([2,1],cc,'valid')print(dd)dd=np.convolve(bb,cc,'same')print(dd)dd=np.convolve(bb,cc,'full')print(dd)结果:8[8][27][276]
- Day.49
m0_64714591
机器学习深度学习人工智能
cbam训练:importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transformsfromtorch.utils.dataimportDataLoaderimportmatplotlib.pyplotaspltimportnumpyasnpplt.rcParams["font.fa
- python训练60天挑战-day51
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高kaggl的一个图像数据集;数据集地址:LungNoduleMalignancy肺结核良恶性判断三层卷积CNN做到的精度63%,现在需要实现提高。importosimportpandasaspdimportnumpyasnpfromsklearn.model_se
- DAY 51 复习日
忧陌606
Python打卡python
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高(一)Day43代码importosimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimporttorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.
- 用Python解锁图像处理之力:从基础到智能应用的深度探索
熊猫钓鱼>_>
python图像处理开发语言
在像素构成的数字世界里,Python已成为解码图像奥秘的核心引擎。一、为何选择Python处理图像?超越工具的本质思考当人们谈论图像处理时,往往会陷入工具对比的漩涡(PythonvsMATLABvsC++)。但Python的真正价值在于其构建的完整生态闭环:科学计算基石:NumPy的ndarray结构完美对应图像的多维矩阵本质算法实现自由:从传统算子到深度学习模型的无缝衔接可视化即战力:Matpl
- Day51 复习日-模型改进
cylat
python打卡机器学习人工智能python神经网络深度学习
day43对自己找的数据集用简单cnn训练,现在用预训练,加入注意力等importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transforms,modelsfromtorch.utils.dataimportDataLoader,random_splitimportmatplotlib
- 科比投篮预测——数据处理与分析
Ssaty.
python机器学习数据挖掘
第1关:数据清洗importnumpyasnpimportpandasaspdimportwarningswarnings.filterwarnings("ignore")pd.set_option('display.max_columns',1000)pd.set_option(<
- 大数据分析技术的学习路径,不是绝对的,仅供参考
水云桐程序员
学习大数据数据分析学习方法
阶段一:基础筑基(1-3个月)1.编程语言:Python:掌握基础语法、数据结构、流程控制、函数、面向对象编程、常用库(NumPy,Pandas)。SQL:精通SELECT语句(过滤、排序、分组、聚合、连接)、DDL/DML基础。理解关系型数据库概念(表、主键、外键、索引)。MySQL或PostgreSQL是很好的起点。Java/Scala:深入理解Hadoop/Spark等框架会更有优势。初学者
- Python工程师面试题集
木鱼时刻
软件开发python开发语言
文章目录一、Python基础二、关键Python库三、Web开发四、并发与性能五、系统设计答案区一、Python基础Python的可变与不可变数据类型有哪些?底层实现原理?Python2与Python3的主要区别解释GIL全局解释器锁及其对多线程的影响装饰器Decorator的作用与实现原理二、关键Python库Pandas的核心作用及数据结构常用Pandas操作与缺失值处理百万级数据优化技巧Nu
- NumPy-核心函数np.matmul()深入解析
GG不是gg
numpynumpy
NumPy-核心函数np.matmul深入解析一、矩阵乘法的本质与`np.matmul()`的设计目标1.数学定义:从二维到多维的扩展2.设计目标二、`np.matmul()`核心语法与参数解析函数签名核心特性三、多维场景下的核心运算逻辑1.二维矩阵乘法:基础用法2.一维向量与二维矩阵相乘3.高维数组:批次矩阵乘法4.广播机制下的形状匹配四、与`np.dot()`和`*`运算符的核心区别1.对比`
- PyCharm运行后出不了图,如何解决?
我不是哆啦A梦
pycharm编程技术pycharmpythonide
如果PyCharm运行后出不了图,如下图所示图1或许,你可以尝试以下几种方法:(1)检查你的代码是否正确,比如使用Matplotlib库时,是否有以下代码:importmatplotlib.pyplotaspltplt.show()#显示图像(2)检查PyCharm的设置中图像显示。图2(3)上述步骤均未能解决问题的话,尝试切换Matplotlib的后端渲染引擎,即在代码开头加上以下代码:from
- Python训练营-Day40
m0_72314023
python开发语言
importtorchimporttorch.nnasnnimporttorch.optimasoptimfromsklearn.model_selectionimporttrain_test_splitfromsklearn.preprocessingimportMinMaxScalerimporttimeimportmatplotlib.pyplotaspltfromtqdmimporttqd
- Python训练营-Day18
importpandasaspdimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings("ignore")plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes
- Python训练营-Day20
importpandasaspdimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings("ignore")plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes
- 数字图像处理第二次实验
愚戏师
数字图像处理python图像处理
实验三技术点分析根据实验要求,需要实现以下图像空间域滤波技术:噪声生成:高斯噪声椒盐噪声空间域滤波:均值滤波(3×3,5×5,7×7)中值滤波(3×3,5×5,7×7)最大值滤波最小值滤波图像处理流程:读取原始图像添加噪声(高斯/椒盐)应用各种滤波器可视化对比结果完整示例代码importcv2importnumpyasnpimportmatplotlib.pyplotaspltfrommatplo
- 【零基础学AI】第22讲:PyTorch入门 - 动态图计算与图像分类器实战
1989
0基础学AI人工智能pytorchpython机器学习sklearn深度学习
本节课你将学到理解PyTorch的核心概念和优势掌握张量(Tensor)的基本操作学会使用动态计算图构建神经网络实现一个完整的图像分类器项目训练模型并进行预测开始之前环境要求Python3.8+建议使用GPU(可选,CPU也能运行)内存:至少4GB需要安装的包#CPU版本(推荐新手)pipinstalltorchtorchvisionmatplotlibpillow#GPU版本(如果有NVIDIA
- python 中值滤波
search7
python
中值滤波是数字信号处理和数字图像处理领域使用较多的预处理技术,使用邻域内所有信号的中位数替换中心像素的值,可以在滤除异常值的情况下较好地保留纹理信息。该技术会在一定程度上造成图像模糊和失真,滤波窗口变大时会非常明显。importnumpyasnpfromPILimportImageimportscipy.signalassignalim=Image.open('lena.jpg')data=[]w
- day 58 python打卡
作业:对太阳黑子数量数据集用arima完成流程1.导入原始数据,并可视化#导入必要的库importpandasaspdimportmatplotlib.pyplotaspltfromstatsmodels.tsa.stattoolsimportadfullerfromstatsmodels.graphics.tsaplotsimportplot_acf,plot_pacffromstatsmode
- python使用sqllite处理db文件中的图片存读问题
clown_38501
数据库python
脚本如下:#1.SQlite原生类型:BLOB对应python的bytes字节码"""date:2024.03.04author:clownpython3使用sqlite3处理db类型文件中图片存读"""importsysimportsqlite3importbase64importcv2importnumpyasnpprint("python版本:",sys.version)#3.6.8(tag
- python-numpy-常用函数详解
木心心以向荣
python-numpynumpypython开发语言
文章目录一、函数详解np.empty(num_points)np.zeros(shape,dtype=float,order='C')np.tile(A,reps)np.newaxisnp.stack(arrays,axis=0)np.roll(a,shift,axis=None)np.repeat(a,repeats,axis=None)arr.reshape(shape)arr.ravel()
- 数据处理与统计分析——03-Numpy的np.dot()方法&点积与矩阵乘法
零光速
数据分析numpy矩阵python开发语言数据结构
np.dot()np.dot()在NumPy中既可以用于向量的点积,也可以用于矩阵乘法,这两种运算的本质不同,取决于输入是向量还是矩阵。1.点积(DotProduct)定义当np.dot()的输入是两个一维向量时,计算的是点积,即两个向量的对应元素相乘并求和,结果是一个标量。公式对于两个n维向量a=[a1,a2,…,an]和b=[b1,b2,…,bn]点积的计算公式为:a⋅b=a1*b1+a2*b
- 数据分析06——Pandas中的数据抽取
1、前言:在Pandas中进行数据抽取主要有两种方法,一种是loc方法(通过索引名),一种是iloc方法(通过索引号);在获取数据时可以获取的数据有三种形式,一种是Series类型,一种是DataFrame类型,还有一种是直接获取数据值;在进行切片获取数据时,要注意通过索引号来切片是左闭右开,通过索引名来切片就是左闭右闭;2、通过loc方法来抽取数据:首先新建一个DataFrame数据类型的数据i
- padans取某列指定数据
苏黎caius
我的pandas使用日记pandaspython数据分析
padans取某列指定数据我的pandas使用日记一、pandas是什么?pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库(当然,下面是示例,用到什么引什么,用不到numpy啥的就别引了)代码如下(示例):importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportseabor
- Python 借助 Matplotlib 绘制分形图形的诀窍
Python编程之道
pythonmatplotlib信息可视化ai
Python借助Matplotlib绘制分形图形的诀窍关键词:Python,Matplotlib,分形图形,递归算法,数据可视化,数学艺术,计算机图形学摘要:本文深入探讨了使用Python和Matplotlib库绘制分形图形的核心技术。从分形数学原理入手,详细解析了多种经典分形图形的生成算法,包括曼德勃罗集、朱利亚集、科赫雪花、谢尔宾斯基三角形等。文章提供了完整的Python实现代码,结合Matp
- Python Pandas 数据的体育数据处理和分析
Python编程之道
Python人工智能与大数据Python编程之道pythonpandas开发语言ai
PythonPandas数据的体育数据处理和分析关键词:PythonPandas,体育数据分析,数据清洗,数据可视化,特征工程,机器学习,体育统计摘要:本文将深入探讨如何使用PythonPandas库进行体育数据的处理和分析。我们将从基础的数据导入和清洗开始,逐步深入到复杂的统计分析、可视化展示以及机器学习建模。文章将涵盖数据处理的全流程,包括数据获取、清洗、转换、分析和可视化,并结合实际体育数据
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象