Android - 一种相似图片搜索算法的实现

阅读更多
Android - 一种相似图片搜索算法的实现_第1张图片

算法

缩小尺寸。

将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。

简化色彩。

将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。

计算平均值。

计算所有64个像素的灰度平均值。

比较像素的灰度。

将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。

计算哈希值。

将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。

对比指纹

看看64位中有多少位是不一样的。在理论上,这等同于计算”汉明距离”(Hamming distance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。

实现关键点

计算灰阶
private static double calculateGrayValue(int pixel) {
    int red = (pixel >> 16) & 0xFF;
    int green = (pixel >> 8) & 0xFF;
    int blue = (pixel) & 255;
    return 0.3 * red + 0.59 * green + 0.11 * blue;
}

汉明距离

最终指纹其实是 0101 的二进制数字,举例

111000
111111

那么这两个数字的汉明距离,其实就是 ^ 运算后 1 的个数。

private static int hamDist(long finger1, long finger2) {
    int dist = 0;
    long result = finger1 ^ finger2;
    while (result != 0) {
        ++dist;
        result &= result - 1;
    }
    return dist;
}


源码

https://github.com/gavinliu/SimilarPhoto

参考资料

相似图片搜索的原理
  • Android - 一种相似图片搜索算法的实现_第2张图片
  • 大小: 126.9 KB
  • 查看图片附件

你可能感兴趣的:(android,算法)