参考官网:http://kafka.apache.org/quick...
一、下载Kafka
官网下载地址 http://kafka.apache.org/downl...
截至2019年7月8日 最新版本为 2.3.0 2.12为编译的scala版本 2.3.0为kafka版本
-
Scala 2.12 - kafka_2.12-2.3.0.tgz (asc, sha512)
解压 > tar -xzf kafka_2.12-2.3.0.tgz > cd kafka_2.12-2.3.0
二、启动服务
要先启动zookeeper kafka内置了一个 也可以不用
> bin/zookeeper-server-start.sh config/zookeeper.properties
[2013-04-22 15:01:37,495] INFO Reading configuration from: config/zookeeper.properties (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
...
> bin/kafka-server-start.sh config/server.properties
[2013-04-22 15:01:47,028] INFO Verifying properties (kafka.utils.VerifiableProperties)
[2013-04-22 15:01:47,051] INFO Property socket.send.buffer.bytes is overridden to 1048576 (kafka.utils.VerifiableProperties)
...
三、创建topic
replication-factor为1 partitions为1
> bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 --topic test
查看topic
> bin/kafka-topics.sh --list --bootstrap-server localhost:9092
test
也可以不创建topic 设置自动创建 当publish的时候
四、发送消息
用command line client 进行测试 一行就是一条消息
> bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
This is a message
This is another message
五、消费者
command line consumer 可以接收消息
> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning
This is a message
This is another message
六、设置多broker集群
单broker没有意思 我们可以设置三个broker
首先为每个broker 复制配置文件
> cp config/server.properties config/server-1.properties
> cp config/server.properties config/server-2.properties
然后编辑
config/server-1.properties:
broker.id=1
listeners=PLAINTEXT://:9093
log.dirs=/tmp/kafka-logs-1
config/server-2.properties:
broker.id=2
listeners=PLAINTEXT://:9094
log.dirs=/tmp/kafka-logs-2
broker.id是唯一的 cluster中每一个node的名字 我们在same machine上 所有要设置listeners和log.dirs 以防冲突
建一个topic 一个partitions 三个replication-factor
> bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 3 --partitions 1 --topic my-replicated-topic
用describe看看都是什么情况
> bin/kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic my-replicated-topic
Topic:my-replicated-topic PartitionCount:1 ReplicationFactor:3 Configs:
Topic: my-replicated-topic Partition: 0 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0
- 有几个概念 :
- "leader" is the node responsible for all reads and writes for the given partition. Each node will be the leader for a randomly selected portion of the partitions.
- "replicas" is the list of nodes that replicate the log for this partition regardless of whether they are the leader or even if they are currently alive.
- "isr" is the set of "in-sync" replicas. This is the subset of the replicas list that is currently alive and caught-up to the leader.
刚才那个topic
> bin/kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic test
Topic:test PartitionCount:1 ReplicationFactor:1 Configs:
Topic: test Partition: 0 Leader: 0 Replicas: 0 Isr: 0
发送 接收
> bin/kafka-console-producer.sh --broker-list localhost:9092 --topic my-replicated-topic
...
my test message 1
my test message 2
^C
> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic my-replicated-topic
...
my test message 1
my test message 2
^C
试一下容错 fault-tolerance
> ps aux | grep server-1.properties
7564 ttys002 0:15.91 /System/Library/Frameworks/JavaVM.framework/Versions/1.8/Home/bin/java...
> kill -9 7564
看一下变化:Leader换了一个 因为1被干掉了
> bin/kafka-topics.sh --describe --bootstrap-server localhost:9092 --topic my-replicated-topic
Topic:my-replicated-topic PartitionCount:1 ReplicationFactor:3 Configs:
Topic: my-replicated-topic Partition: 0 Leader: 2 Replicas: 1,2,0 Isr: 2,0
还是收到了消息
> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic my-replicated-topic
...
my test message 1
my test message 2
^C
七、使用kafka import/export data
刚才都是console 的数据,其他的sources other systems呢 用Kafka Connect
弄一个数据
> echo -e "foo\nbar" > test.txt
启动 指定配置文件
> bin/connect-standalone.sh config/connect-standalone.properties config/connect-file-source.properties config/connect-file-sink.properties
验证一下
> more test.sink.txt
foo
bar
消费者端
> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic connect-test --from-beginning
{"schema":{"type":"string","optional":false},"payload":"foo"}
{"schema":{"type":"string","optional":false},"payload":"bar"}
...
可以继续写入
> echo Another line>> test.txt
八、使用Kafka Streams
http://kafka.apache.org/22/do...
WordCountDemo
https://github.com/apache/kaf...
代码片段
// Serializers/deserializers (serde) for String and Long types
final Serde stringSerde = Serdes.String();
final Serde longSerde = Serdes.Long();
// Construct a `KStream` from the input topic "streams-plaintext-input", where message values
// represent lines of text (for the sake of this example, we ignore whatever may be stored
// in the message keys).
KStream textLines = builder.stream("streams-plaintext-input",
Consumed.with(stringSerde, stringSerde);
KTable wordCounts = textLines
// Split each text line, by whitespace, into words.
.flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\\W+")))
// Group the text words as message keys
.groupBy((key, value) -> value)
// Count the occurrences of each word (message key).
.count()
// Store the running counts as a changelog stream to the output topic.
wordCounts.toStream().to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long()));
建一个 Kafka producer 指定input topic output topic
> bin/kafka-topics.sh --create \
--bootstrap-server localhost:9092 \
--replication-factor 1 \
--partitions 1 \
--topic streams-wordcount-output \
--config cleanup.policy=compact
Created topic "streams-wordcount-output".
启动WordCount demo application
bin/kafka-run-class.sh org.apache.kafka.streams.examples.wordcount.WordCountDemo
启动一个生产者写数据
> bin/kafka-console-producer.sh --broker-list localhost:9092 --topic streams-plaintext-input
all streams lead to kafka
hello kafka streams
启动一个消费者接数据
> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \
--topic streams-wordcount-output \
--from-beginning \
--formatter kafka.tools.DefaultMessageFormatter \
--property print.key=true \
--property print.value=true \
--property key.deserializer=org.apache.kafka.common.serialization.StringDeserializer \
--property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer
all 1
streams 1
lead 1
to 1
kafka 1
hello 1
kafka 2
streams 2
kafka 1
更多实时计算相关技术博文,欢迎关注实时流式计算