- 7-3 一元多项式求导 分数 20
超级翼小子
算法
作者DS课程组设计函数求一元多项式的导数。单位浙江大学输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。注意:零多项式用00表示。输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。输入样例:34-5261-20输出样例:123-10160代码长度限制16KB时间限制400ms内存限制64MB栈
- 2024前端面试题-css篇
Adasunshine
面试题前端css面试
1.p和div区别p自带有一定margin-top和margin-bottom属性值,而div两个属性值为0,也便是两个p之间有不一定间距,而div没有。2.对css盒模型的理解标准盒模型:content不包括padding、border、marginie盒模型:content包括padding、border、margin在不设置的情况下,默认为W3C盒模型(标准盒模型)。标准盒模型:box-si
- 【HarmonyOS 鸿蒙实战开发】自定义装饰器
CTrup
移动开发HarmonyOS鸿蒙开发harmonyosArkUIArkts装饰器模式组件化鸿蒙开发移动开发
往期笔录记录:鸿蒙应用开发与鸿蒙系统开发哪个更有前景?嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~对于大前端开发来说,转鸿蒙开发究竟是福还是祸?鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?记录一场鸿蒙开发岗位面试经历~持续更新中……介绍本示例介绍通过自定义装饰器在自定义组件中自动添加inspector(布局回调)方法并进行调用。效果图预览不涉及使用说明在自定义组件上添加自定义装
- Stable Diffusion 模型具体如何设置参数?
壁纸样机神器
stablediffusion人工智能计算机视觉
基础参数设置随机种子(seed):设置一个固定的随机种子值,可以确保在相同文本提示下生成相同的图像。如果设置为-1,则每次生成的图像都是随机的。num_inference_steps:控制模型推理的步数。步数越多,生成的图像质量通常越高,但生成时间也会相应增加。通常使用默认值50步,如果需要更快的结果可以减少步数,而更高质量的图像则可以适当增加步数。guidance_scale:用于调整生成图像对
- YOLO优化之扫描融合模块(SimVSS Block)
清风AI
人工智能计算机视觉YOLO目标检测深度学习目标跟踪
研究背景在自动驾驶技术快速发展的背景下,目标检测作为其核心组成部分面临着严峻挑战。驾驶场景中目标尺度和大小的巨大差异,以及视觉特征不显著且易受噪声干扰的问题,对辅助驾驶系统的安全性构成了潜在威胁。传统的卷积神经网络(CNN)虽然在目标检测领域取得了显著进展,但仍存在局限性,如局部关注性导致难以有效检测不同尺度的目标。为克服这些问题,研究人员开始探索将状态空间模型(SSM)引入目标检测领域,以期提高
- 从0到1掌握Flutter(三)Dart语法
微声G
从0到1掌握Flutterflutter
引言本文接上篇:从0到1掌握Flutter(二)环境搭建与认识工程Dart语言基础是Flutter开发必须掌握的核心知识。本文将讲解变量与常量的声明、Dart内置类型体系及其用法、运算符的应用场景三大模块。对于具备Java/Kotlin背景的学习者,可以通过对比学习法快速定位知识缺口,理解语法的共性。一、变量与常量1.1变量万物皆对象在Dart的类型系统中,变量本质上是指对象的引用,这一设计符合面
- 新手村:线性回归-实战-波士顿房价预测
嘉羽很烦
机器学习线性回归算法回归
新手村:线性回归-实战-波士顿房价预测前置条件阅读:新手村:线性回归了解相关概念实验目的1.熟悉机器学习的一般流程2.掌握基础的数据处理方法3.理解常用的回归算法教学例子:预测房价(以波士顿房价数据集为例)本次实验,你将使用真实的波士顿房价数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念和评价方法,请通过机器学习建立回归模型,即:Y=θ0+θ1×X1+θ2×X2+θ3×X3+⋯+θ
- 新手村:混淆矩阵
嘉羽很烦
机器学习机器学习
新手村:混淆矩阵一、前置条件知识点要求学习资源分类模型基础理解分类任务(如二分类、多分类)和常见分类算法(如逻辑回归、决策树)。《Hands-OnMachineLearningwithScikit-Learn》Python基础熟悉变量、循环、函数、列表、字典等基本语法。《PythonCrashCourse》或在线教程(如Codecademy)scikit-learn基础掌握模型训练、预测、评估的基
- 如何快速写开题报告?
我是宝库
人工智能经验分享学习方法毕业论文开题报告毕业设计毕设
又到了毕业季,你是不是内心已经十分捉急?开题报告还没开始写?该怎么写?写好开题报告,就是论文成功的开始!开题报告越细致,论文的写作就越有方向和思路。每个学校都会出台关于开题报告的相关要求也会给到相关模板,同学们可以自己到学校的官网下载相关模板。一般而言,开题报告包括以下六个部分的内容:1.研究背景和意义2.文献综述3.研究提纲及预期贡献4.研究进度5.拟采用的研究方法、手段及采取的措施6.可能遇见
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- RAG技术深度解析:从基础Agent到复杂推理Deep Search的架构实践
小爷毛毛(卓寿杰)
系统架构与解决方案搜索推荐架构语言模型人工智能自然语言处理
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展一、什么是RAGAgent?1.从信息处理到智能生成在自然语言处
- 以太网驱动Eth的AutoSAR配置及源代码实现
程序员杨弋
单片机嵌入式硬件AUTOSAR
一、概述在现代汽车中以太网(Ethernet)被广泛应用于实现车辆内部的高速数据通信,AutoSAR(AUTomotiveOpenSystemARchitecture)作为汽车行业的标准化框架,提供了一套规范和方法论,简化了汽车软件开发过程并促进了模块化设计,本文将介绍如何配置和实现以太网驱动Eth的AutoSAR集成以及相关的源代码示例。二、AutoSAR配置1、Eth驱动模块的配置在AutoS
- Free QWQ - 世界首个免费无限制分布式 QwQ API
安替-AnTi
大模型理论&实战指南开源大模型qwen分布式免费
文章目录简介截图网址/二维码介绍/推荐语核心特点使用方式技术栈简介一句话简介:基于QwQ32B大语言模型的完全免费、无限制、无需注册登录的分布式AI算力平台。截图网址/二维码官方网站:https://qwq.aigpu.cn介绍/推荐语FreeQWQ是世界上第一个完全免费、无限制的分布式AI算力平台,基于阿里最新开源的QwQ32B大语言模型提供强大的AI服务。通过创新的分布式算力架构,整合了来自全
- 【2025】Electron Git Desktop 实战一(上)(架构及首页设计开发)
IsMShmily
_Electronelectrongitjavascript
源代码仓库:Github仓库【electron_git】Commit:bb40040GithubDesktop页面分析本节目标:1、实现类似GithubDesktop的「空仓库」提示页2、添加本地仓库逻辑编写从GithubDesktop我们看到他的主要页面分为三个区域Head头部区域(操作分支)Side侧边栏区域(查看更新的文件)Main主区域(查看文件Diff内容)Tip:其实初始化的时候只有一
- 【解锁机器学习:探寻数学基石】
游戏乐趣
机器学习人工智能
机器学习中的数学基础探秘在当今数字化时代,机器学习无疑是最具影响力和发展潜力的技术领域之一。从图像识别到自然语言处理,从智能推荐系统到自动驾驶,机器学习的应用无处不在,深刻地改变着我们的生活和工作方式。然而,在这看似神奇的机器学习背后,数学作为其坚实的理论基础,起着不可或缺的关键作用。毫不夸张地说,数学是打开机器学习大门的钥匙,是理解和掌握机器学习算法与模型的核心所在。想象一下,机器学习就像是一座
- 即插即用模块--KANLinear
苏格拉没有鞋底
模型训练深度学习人工智能python
KAN网络KAN网络即Kolmogorov-Arnold网络,是一类基于Kolmogorov-Arnold表示定理的神经网络架构,具有强大的非线性表达能力。在相同迭代次数下超越传统MLP,不仅训练速度更快,收敛性更好,而且在拟合复杂函数时的精度也明显提高。这是一个即插即用模块–KANLinear,使用时import这个代码文件,然后模型中的nn.Linear换成这个KANLinear即可impor
- DeepSeek 发布开源第二弹!让MoE架构效率提升的神助攻【DeepEP】
碣石潇湘无限路
开源架构llamaai
摘要:本文将针对DeepEP项目进行深入浅出的功能解析与设计分析,并在此基础上提出一些潜在的优化思路。本报告分为三个主要部分:功能解析、创新设计点、可能的优化方案。为了便于理解,文中会适度引用部分代码片段或函数接口说明。一、功能解析DeepEP旨在为MoE(MixtureofExperts)及其专家并行(Expert-Parallel)场景提供高效的通信库,核心功能包括:分发(Dispatch):
- 机器学习——正则化、欠拟合、过拟合、学习曲线
代码的建筑师
学习记录机器学习机器学习学习曲线过拟合欠拟合正则化
过拟合(overfitting):模型只能拟合训练数据的状态。即过度训练。避免过拟合的几种方法:①增加全部训练数据的数量(最为有效的方式)②使用简单的模型(简单的模型学不够,复杂的模型学的太多),这里的简单指的是不要过于复杂③正则化(对目标函数后加上正则化项):使得这个“目标函数+正则化项”的值最小,即为正则化,用防止参数变得过大(参数值变小,意味着对目标函数的影响变小),λ是正则化参数,代表正则
- MySQL知识点
梅塔文·欧帕西安卡琼
MySQLmysql
什么是SQL注入?SQL注入就是在用户输入的字符串中加入SQL语句,如果在设计不良的程序中忽略了检查,那么这些注入进去的SQL语句就会被数据库服务器误认为是正常的SQL语句而运行,攻击者就可以执行计划外的命令或访问未被授权的数据。SQL注入的原理SQL注入的原理主要有以下4点:1.恶意拼接查询我们知道,SQL语句可以查询、插入、更新和删除数据,且使用分号来分隔不同的命令。例如:SELECT*FRO
- 如何干好测试管理工作
测试工具
**要想干好测试管理工作,核心要关注:测试流程规范、团队协作效率、用例设计覆盖度、风险评估与预防措施、持续改进文化。其中,团队协作效率尤其关键,它决定了测试信息的流转速度和缺陷修复的响应能力。若沟通不畅、责任不清,往往会导致测试周期拉长或缺陷反复出现。因此,要努力营造一个“开放、信任、主动分享”的团队氛围,促进跨部门、跨角色的高效协同,从而提升整体测试质量与效率。一、测试管理的背景和重要性测试管理
- 标准C语言实现简单Web服务器(注意:暂未解决更改端口号的问题)
沈骁Alpha
计算机网络C/C++c语言sockethttp计算机网络
目录一、设计目标二、相关技术三、设计内容3.1需求分析3.2概要设计3.3详细设计(主要函数分析)3.3.1(socket)3.3.2(bind)3.3.3(listen)3.3.4(accept)3.3.5(connect)四、完整代码一、设计目标完成基础的tcp连接,支持基础的client与其连接使用fork()来支持并发访问服务器简单的http访问,支持静态页面访问,需要一定的报错机制,如4
- 了解状态机
Mcband
java
前言状态机(StateMachine)是一种数学模型,用于描述系统或程序在不同状态之间转换的行为。它由一组状态、转移条件和动作组成。一、什么是状态机?状态机可以被看作是一个抽象的机器,它可以处于不同的状态,并根据输入条件执行相应的动作来改变状态。状态表示了系统或程序所处的特定情况或阶段,而转移条件决定了在何种条件下从一个状态转移到另一个状态,动作则表示在状态转移时要执行的操作。二、状态机的实例一个
- C#的简单工厂模式、工厂方法模式、抽象工厂模式
观无
javac#开发语言
工厂模式是一种创建型设计模式,主要将对象的创建和使用分离,使得系统更加灵活和可维护。常见的工厂模式有简单工厂模式、工厂方法模式和抽象工厂模式,以下是C#实现的三个案例:简单工厂模式简单工厂模式通过一个工厂类来创建对象,而不需要把客户端代码与具体类的实现细节绑定在一起。usingSystem;//1.定义产品接口publicinterfaceIProduct{voidUse();}//2.创建具体产
- 从过拟合到强化学习:机器学习核心知识全解析
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能过拟合强化学习pythonLLMscikit-learn
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 应用层之网络应用模型,HTTP/HTTPS协议
@ANONYME
httphttps网络协议p2p
应用层是网络协议栈的最顶层,直接为应用程序提供通信服务,定义了不同主机间应用进程交互的规则,包括报文类型、语法、语义及通信时序一、网络应用模型1.定义及特点模型定义核心特点典型应用场景C/S客户端向服务器发起请求,服务器集中处理并响应资源,依赖中心化架构1.角色明确(客户端与服务器分离)2.资源集中在服务器端3.依赖网络稳定性与服务器性能4.易于管理和维护Web服务(HTTP)、邮件系统(SMTP
- Simulink实例演示:智能车辆自动超车策略仿真
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏matlabsimulink
目录Simulink实例演示:智能车辆自动超车策略仿真一、背景介绍二、所需工具和环境三、步骤详解步骤1:创建Simulink模型
- 【网络安全】使用mbedtls 实现 RSA 签名、验签、加密、解密
亿码归一码
网络安全web安全安全
简介mbedtls(前身是PolarSSL)是一个开源、轻量级的SSL/TLS库,专为嵌入式系统和资源受限环境设计。RSA是一种广泛应用的非对称加密算法,是公开密钥密码体制(PublicKeyCryptosystem)的一个典型代表,它的核心特点是采用一对密钥,分别是公开密钥(PublicKey)和私有密钥(PrivateKey)。相关头文件#include#include#include#inc
- MyBatis-Plus 逻辑删除:让数据“消失”却不真正删除的秘密!
码熔burning
数据库MySQLmybatismysql
目录一、什么是逻辑删除?二、MyBatis-Plus如何实现逻辑删除?⚙️三、总结:我的其他文章也讲解的比较有趣,如果喜欢博主的讲解方式,可以多多支持一下,感谢!了解DELETE、TRUNCATE、DROP关键字请看:MySQL数据删除三剑客:DELETE、TRUNCATE、DROP秒懂!其他优质专栏:【SpringBoot】【多线程】【Redis】【✨设计模式专栏(已完结)】…等如果喜欢作者的讲
- 利用matlab实现贝叶斯优化算法(BO)优化支持向量机回归(SVR)的超参数
是内啡肽耶
算法matlab支持向量机机器学习回归
【导读】在机器学习建模中,支持向量机(SVM)回归模型的效果高度依赖超参数选择。但手动调参就像"大海捞针",而网格搜索又面临"计算爆炸"的难题。今天给大家介绍一个智能调参黑科技——贝叶斯优化算法。通过Matlab实现,只需几分钟就能让模型性能自动升级!一、为什么要用贝叶斯优化调参?传统调参三大痛点:C参数(正则化强度):过小导致过拟合,过大削弱模型能力ε参数(不敏感区域):决定对预测误差的容忍度核
- LangChain大模型应用开发:LangGraph快速入门
老赵爱学习
langchainpython自然语言处理人工智能langgraph
介绍大家好,博主又来给大家分享知识了。一直以来,我都非常感激大家对我的支持与鼓励,大家的点赞、关注和收藏,不仅是对博主分享内容的认可,更是博主不断创作、坚持分享知识的永恒动力。今天给大家分享的内容是使用LangChain进行大模型应用开发中的LangGraph,那么什么是LangGraph呢?我们直接进入正题。LangGraphLangGraph概述LangGraph是一个用于借助大语言模型(LL
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比