- 通俗详解redis底层数据结构哈希表之渐进式rehash
八股文领域大手子
javajvm算法数据库mysqlredis
一、为什么要用渐进式rehash?假设你家的旧柜子(哈希表)装满了,需要换个大柜子。如果一次性把所有东西倒腾到新柜子,你可能得停下手头所有事,累得半死(这就是传统rehash的问题:卡顿)。Redis为了不“累死”,选择边搬边用,每次搬一点,这就是“渐进式”。二、具体怎么“搬家”?1️⃣先准备好新柜子(分配空间)•Redis会先申请一个更大的新哈希表(比如旧表两倍大),这时候系统里同时有「旧表」和
- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- Selenium自动化测试框架设计
互联网杂货铺
selenium测试工具软件测试自动化测试python面试职场和发展
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快不熟悉自动化测试,也没接触过主流大厂技术,之前在小公司做点工,现在想进大厂拿高薪,该怎么做?类似上述的问题是最经典的,每年都会被无数人问及。测试人想要升职加薪,对一线主流技术的精通是必不可少的。对于从业两三年的新人来说,我建议先从Selenium自动化测试框架设计入手!这是搞定大厂面试的一条捷径。说一下原因:1、大厂都要求熟悉Seleni
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- Lua的面向对象,封装,继承,多态
顽石2019
概述我们总所周知对象是由属性和方法组成的,要用lua要描述一个对象,也必然要有这两个特性,属性和方法。lua的基本结构是table,所以Lua的类,其实都是table,因为它可以存储普通的变量又可以存储方法,我们利用table就可以描述一个对象的属性和方法。对象其实lua要模拟一个对象,关键就在于__index设置元表索引这块,它主要起到索引失败后该怎么办,如果它指向一张表,那么__index索引
- k8s往secret里导入证书_Kubernetes K8S之存储Secret详解
weixin_39604598
k8s往secret里导入证书
K8S之存储Secret概述与类型说明,并详解经常使用Secret示例html主机配置规划服务器名称(hostname)系统版本配置内网IP外网IP(模拟)k8s-masterCentOS7.72C/4G/20G172.16.1.11010.0.0.110k8s-node01CentOS7.72C/4G/20G172.16.1.11110.0.0.111k8s-node02CentOS7.72C/
- 关于重投影误差小记
文弱_书生
乱七八糟数码相机算法
重投影误差(ReprojectionError)讲解1.什么是重投影误差?在三维重建或相机标定过程中,我们希望将一个世界坐标系中的三维点投影到相机的图像平面上。理想情况下,该点的投影位置应该与实际图像中的观测点(如特征点)完全匹配,但由于噪声、相机模型的不准确性或优化算法的误差,这两个点可能会有偏差。重投影误差就是这个偏差的度量,即:e=∥pobserved−preprojected∥e=\|p_
- 关于离子滤波小记
文弱_书生
乱七八糟人工智能计算机视觉算法
粒子滤波(ParticleFilter,PF)粒子滤波是一种基于蒙特卡洛方法的贝叶斯滤波算法,主要用于解决非线性、非高斯的状态估计问题。它广泛应用于机器人定位、目标跟踪、金融建模等领域。1.粒子滤波的基本概念粒子滤波的核心思想是用一组加权的**随机样本(粒子)**来近似后验概率分布,而非采用卡尔曼滤波那样的参数化分布假设(如高斯分布)。设系统的状态模型如下:xk=f(xk−1,uk,wk)x_k=
- 旋转位置编码(Rotary Positional Encoding, RoPE):中文公式详解与代码实现
RockLiu@805
深度学习模块人工智能自然语言处理语言模型深度学习
旋转位置编码(RotaryPositionalEncoding,RoPE):中文公式详解与代码实现在序列模型中,位置信息对于任务的理解至关重要。传统的绝对和相对位置编码各有优缺点,而RoPE作为一种创新的位置编码方法,展现了其独特的优势。RoPE的核心思想RoPE通过旋转机制动态地捕捉位置信息。它允许查询(query)和键(key)向量的旋转程度根据它们之间的相对或绝对位置自动调整。这种方法使模型
- 目标检测中归一化的目的?
林语微光
kaggle目标检测目标跟踪人工智能
在目标检测任务中,归一化坐标和尺寸时需要除以图像的宽度和高度,主要有以下几个原因:1.统一尺度不同图像可能具有不同的宽度和高度。通过将坐标和尺寸除以图像的宽度和高度,可以将所有图像的标注信息统一到相同的尺度范围([0,1])。这使得模型在训练和推理时能够处理任意尺寸的图像,而不需要关心图像的具体像素尺寸。2.位置和尺寸的相对性归一化后的坐标和尺寸是相对于图像尺寸的,而不是绝对像素值。这种相对性使得
- 关于神经网络中的正则化
文弱_书生
乱七八糟神经网络人工智能深度学习
神经网络训练中的正则化正则化(Regularization)是神经网络训练中的一个关键技术,主要用于防止模型过拟合(overfitting),提高泛化能力。1.为什么需要正则化?在神经网络训练过程中,模型的目标是找到能在训练数据上表现良好的参数,同时也能泛化到未见过的数据。如果一个模型过于复杂(如参数过多、层数过深),它可能会记住训练数据中的噪声,而不是学习数据的本质模式。这种情况称为过拟合(ov
- Python异步编程 - asyncio库
孤寒者
Python全栈系列教程python异步编程asyncioyield协程
目录:每篇前言:异步IOPython中的异步编程实现方式:协程Python传统协程示例:实现生产者-消费者模型消费者:生产者:运行流程:整体流程:传统协程——>现代协程:asyncio库async/await每篇前言:作者介绍:【孤寒者】—CSDN全栈领域优质创作者、HDZ核心组成员、华为云享专家Python全栈领域博主、CSDN原力计划作者本文已收录于爬虫必备前端技术栈专栏:《爬虫必备前端技术栈
- 栈-数据结构(C语言)
java_prinln
数据结构数据结构c语言栈
栈我们在用浏览器打开网页的时候,时常会点击页面上的某个链接跳转到其它页面浏览,又会在新的页面上,点击链接跳转到另一个新页面。另外,如果想回到上一个页面,就会点击浏览器的“返回”按钮,再点击一下又会返回上一个页面,而且每次点击“返回”只能返回上一级,浏览器的这个功能是怎么实现的呢?浏览器的这个功能可以用栈来实现,当前浏览的页面我们叫它为栈顶元素,跳转到一个新页面我们叫元素入栈,点击“返回”按钮我们叫
- 传统金融和分布式金融
倒霉男孩
DeFi金融分布式
文章目录传统金融和分布式金融一、传统金融机构的核心问题深度剖析1.支付与清算系统的结构性缺陷2.金融排斥(FinancialExclusion)的根源3.中心化风险的爆发与传导二、DeFi的技术突破与创新机制1.支付与清算:区块链的底层重构2.普惠金融的技术民主化3.去中心化治理与透明化运作三、DeFivs传统金融的范式革命1.价值传递范式的颠覆2.风险分散机制的升级3.经济模型的创新实验四、De
- 谷歌:对比学习将LLM转为嵌入模型
大模型任我行
大模型-成熟基座人工智能自然语言处理语言模型论文笔记
标题:GeminiEmbedding:GeneralizableEmbeddingsfromGemini来源:arXiv,2503.07891摘要在本报告中,我们介绍了Gemini嵌入,这是一种最先进的嵌入模型,它利用了Gemini、Google最有能力的大型语言模型的力量。利用Gemini固有的多语言和代码理解能力,GeminiEmbedding为跨越多种语言和文本模式的文本生成高度可概括的嵌入
- rust Send Sync 以及对象安全和对象不安全
叠叠乐
rust
开头:菜鸟小明的疑惑小明:“李哥,我最近学Rust,感觉它超级严谨,啥Send、Sync、对象安全、静态分发、动态分发的,我都搞晕了!为啥Rust要设计得这么复杂啊?”小李(笑):“别急,Rust是因为想让代码‘安全’,又‘高性能’,所以才有这么多机制。我们从头讲,慢慢来,一定搞清楚。”---第一章:线程安全是怎么做到的?Send/Sync---Send是啥?小明:“我知道线程是并发执行的,但Ru
- 第三十篇 维度建模:从理论到落地的企业级实践
随缘而动,随遇而安
数据库sql数据仓库大数据数据库架构
目录一、维度建模核心理论体系1.1Kimball方法论四大支柱1.2关键概念对比矩阵二、四步建模法全流程解析2.1选择业务过程(以电商为例)2.2声明原子粒度(订单案例)2.3维度设计规范时间维度(含财年逻辑)SCDType2完整实现(Hudi)2.4事实表类型与设计三、企业级建模实战:电商用户分析3.1业务矩阵分析3.2模型实现代码四、高级建模技巧4.1多星型模式关联4.2大数据场景优化五、性能
- 【Flink】flink启动任务,taskmanager.out 文件增涨非常快
九师兄
flink大数据
1.概述flink启动任务,taskmanager.out文件增涨非常快,这个文件大小怎么限定?测试了很多办法发现都不起作用这个问题可以试试:【Flink】Flink1.11.2onYARN滚动日志配置但是后面我发现不是这个导致的,是slf4j依赖冲突,jar包删除就可以了
- 【人工智能机器学习基础篇】——深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理
猿享天开
人工智能数学基础专讲人工智能机器学习无监督学习降维
深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理在当今数据驱动的世界中,数据维度的增多带来了计算复杂性和存储挑战,同时也可能导致模型性能下降,这一现象被称为“维度诅咒”(CurseofDimensionality)。降维作为一种重要的特征提取和数据预处理技术,旨在通过减少数据的维度,保留其主要信息,从而简化数据处理过程,并提升模型的性能。本文将深入探讨两种广泛应用于无监督学习中的降
- 一、大语言模型微调 vs. 大语言模型应用
AI Echoes
深度学习人工智能deepseek机器学习算法
一、大语言模型微调vs.大语言模型应用1.微调(Fine-Tuning)的含义与特点定义与作用微调指在预训练好(通用)的基础模型上,通过在特定领域或任务的数据集上进一步训练来调整模型参数,使其在该领域任务中获得更优表现。这种方法可以使通用模型“定制化”,更好地理解专业术语和领域知识,从而提升准确性和响应质量。例如,为医疗、法律、金融等垂直领域构建专属模型,往往需要在预训练模型基础上进行微调。特点参
- AI界劳斯莱斯o1 -Pro来了!百万token收费600刀,OpenAI在AI普惠反方向狂奔?
算家计算
话题文章人工智能算家云OpenAIo1-proAPIOpenAI发布最贵模型DeepSeek
刚刚,OpenAI宣布推出其最新的高性能推理模型o1-pro。当大家还在为GPT-4.5的订阅费感到肉痛时,OpenAI用一记价格暴击刷新了认知——全新推理模型o1-pro的API定价,输入每百万token收费150美元,输出每百万token收费600美元,比前代模型贵了10倍,更是将DeepSeek-R1甩出270倍价差。与OpenAI其他模型相比,o1-pro的价格高出了不止一点:目前o1-p
- 关于kafka常见的问题小结
BAStriver
#Kafka中间件kafka分布式
目录1.Kafka怎么避免重复消费1.1什么时候出现重复消费1.2如何处理重复消费问题2.Kafka怎么保证消息不丢失2.1Producer2.2Broker2.3Consumer3.Kafka怎么保证消息消费的顺序最近面试遇到一些常见kafka问题,所以做一下总结。1.Kafka怎么避免重复消费1.1什么时候出现重复消费1)Kafka的broker上存储的消息都有一个offset作为标记,然后K
- 模型上下文协议 (MCP)是什么?Model Context Protocol 需要你了解一下
同学小张
学习AIGCAI-nativeagigpt开源协议
大家好,我是同学小张,+v:jasper_8017一起交流,持续学习AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,订阅我的大模型专栏,共同学习和进步。在人工智能领域,ModelContextProtocol(MCP)正逐渐成为连接AI模型与各类数据源及工具的重要标准。MCP究竟为何物?它又将如何改变AI应用的开发与使用?文章目录0.概念1.MCP的总体架构2.为何使用MCP?3.我的理解4
- MCP服务器:AI智能体的新时代连接标准
真挺乐
人工智能
在AI技术的不断发展中,MCP(ModelContextProtocol,模型上下文协议)正成为AI智能体与外部系统交互的新标准。MCP的目标是提供一个统一的方法,让AI智能体能够安全、高效地访问各种数据源、API接口和系统工具,从而扩展其能力,提升智能化水平。本文将深入探讨MCP服务器的架构、优势及其在现实世界中的应用。什么是MCP服务器?MCP服务器是MCP架构中的关键组件,它们充当AI智能体
- ollama 基本使用教程
海上彼尚
AIai前端
目录1.安装OllamamacOS或LinuxWindows(WSL2)2.基础命令启动与停止更新Ollama3.模型管理下载预训练模型运行模型查看已安装模型删除模型从Modelfile创建自定义模型4.高级功能服务器模式与API多会话管理环境变量配置5.常见问题与技巧加速模型下载查看日志模型参数调整模型导出与分享Ollama是一个开源的大型语言模型服务工具,能够帮助用户在本地运行大模型。通过简单
- java Spring Boot ruoyi-vue-pro 模型接入微软 OpenAI(chatgpt)方法
代码简单说
开发必备2025开发必备java若依ruoyi教程javaspringbootvue.jsruoyi-vue-proopenaichatgpt大模型
javaSpringBootruoyi-vue-pro模型接入微软OpenAI方法本项目基于SpringAI提供的spring-ai-azure-openai,实现与微软Azure上部署的OpenAI的接入,涵盖AI对话和AI绘画功能。1.申请密钥1.1AzureAPI申请在微软AzureAI申请。社区小伙伴提供过密钥接入,申请流程应不复杂。申请完成后会得到类似模型列表(如图)。购买完成后,在系统
- 【新品发售】NVIDIA 发布全球最小个人 AI 超级计算机 DGX Spark
segmentfault
GTC2025大会上,NVIDIA正式推出了搭载NVIDIAGraceBlackwell平台的个人AI超级计算机——DGXSpark。赞奇可接受预订,直接私信后台即刻预订!DGXSpark(前身为ProjectDIGITS)支持AI开发者、研究人员、数据科学家和学生,在台式电脑上对大模型进行原型设计、微调和推理。用户可以在本地运行这些模型,或将其部署在NVIDIADGXCloud或任何其他加速云或
- 如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
人工智能机器学习大模型llm
背景:为什么需要一个「裁判员大语言模型」?随着大模型(LLM)技术的爆发式应用,如何快速、客观评估模型回复质量成为行业痛点。对于回答客观问题的LLM,目前业内已经有比较成熟的数据集进行效果评测与模型打榜。但是如何对一个开放式生成LLM进行效果评估,尤其在知识问答、客服对话、内容合规、RAG(检索增强生成)等场景中,目前主流的评测方式仍存在一定的局限性:人工标注:成本高昂、效率低下;传统的自动化评估
- -5V、-3V...这种负电压是怎么产生的?附电路详解!
捷配科技
PCB大全制造pcb工艺捷配
在电子电路领域,负电压常常是不可或缺的元素,尤其在运算放大器等应用场景中,为其建立稳定的负电压供电至关重要。以常见的正5V转负5V为例,来探讨负电压产生的电路原理。通常情况下,若要获取负电压,专用的负压产生芯片是首选,如ICL7600、LT1054等,但这些芯片成本相对较高。在单片机电子电路中,有几种常用的负压产生电路,且这些电路往往能巧妙利用单片机的PWM输出功能。很多单片机的PWM输出功能未被
- 13 异常处理的使用大全
希望_睿智
C++基础知识精讲c++windowsc语言开发语言异常处理
概述异常是指程序在执行的过程中,没有按照预定的流程和逻辑去运行,从而导致数组越界、内存溢出、甚至程序崩溃等各种非正常的情况。在C++、Java和C#等高级语言中,都提供了对于异常的处理机制。异常处理,实际上是一种转移程序控制权的方式。当程序中抛出了异常时,我们可以捕获异常,进而进行相应的处理。处理模型一般有两种:一种是终止模型,表示该异常是致命的,无法恢复,会直接终止程序;另一种是恢复模型,表示该
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http