在与Lucene集成过程中,我们发现最终还要把生成的Lucene索引,拷贝至本地磁盘,才能提供检索服务,这样以来,比较繁琐,而且有以下几个缺点:
(一)在生成索引以及最终能提供正常的服务之前,索引经过多次落地操作,这无疑会给磁盘和网络IO,带来巨大影响
(二)Lucene的Field的配置与其UDF函数的代码耦合性过强,而且提供的配置也比较简单,不太容易满足,灵活多变的检索需求和服务,如果改动索引配置,则有可能需要重新编译源码。
(三)对Hadoop的分布式存储系统HDFS依赖过强,如果使用与Lucene集成,那么则意味着你提供检索的Web服务器,则必须跟hadoop的存储节点在一个机器上,否则,无法从HDFS上下拉索引,除非你自己写程序,或使用scp再次从目标机传输,这样无疑又增加了,系统的复杂性。
鉴于有以上几个缺点,所以建议大家使用Solr或ElasticSearch这样的封装了Lucene更高级的API框架,那么Solr与ElasticSearch和Lucene相比,又有什么优点呢?
(1)在最终的写入数据时,我们可以直接最终结果写入solr或es,同时也可以在HDFS上保存一份,作为灾备。
(2)使用了solr或es,这时,我们字段的配置完全与UDF函数代码无关,我们的任何字段配置的变动,都不会影响Pig的UDF函数的代码,而在UDF函数里,唯一要做的,就是将最终数据,提供给solr和es服务。
(3)solr和es都提供了restful风格的http操作方式,这时候,我们的检索集群完全可以与Hadoop集群分离,从而让他们各自都专注自己的服务。
下面,散仙就具体说下如何使用Pig和Solr集成?
(1)依旧访问这个地址下载源码压缩包。
(2)提取出自己想要的部分,在eclipse工程中,修改定制适合自己环境的的代码(Solr版本是否兼容?hadoop版本是否兼容?,Pig版本是否兼容?)。
(3)使用ant重新打包成jar
(4)在pig里,注册相关依赖的jar包,并使用索引存储
注意,在github下载的压缩里直接提供了对SolrCloud模式的提供,而没有提供,普通模式的函数,散仙在这里稍作修改后,可以支持普通模式的Solr服务,代码如下:
SolrOutputFormat函数
package com.pig.support.solr; import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.OutputCommitter; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.solr.client.solrj.SolrServer; import org.apache.solr.client.solrj.SolrServerException; import org.apache.solr.client.solrj.impl.CloudSolrServer; import org.apache.solr.client.solrj.impl.HttpSolrServer; import org.apache.solr.common.SolrInputDocument; /** * @author qindongliang * 支持SOlr的SolrOutputFormat * 如果你想了解,或学习更多这方面的 * 知识,请加入我们的群: * * 搜索技术交流群(2000人):324714439 * 大数据技术1号交流群(2000人):376932160 (已满) * 大数据技术2号交流群(2000人):415886155 * 微信公众号:我是攻城师(woshigcs) * * */ public class SolrOutputFormat extends FileOutputFormat{ final String address; final String collection; public SolrOutputFormat(String address, String collection) { this.address = address; this.collection = collection; } @Override public RecordWriter getRecordWriter( TaskAttemptContext ctx) throws IOException, InterruptedException { return new SolrRecordWriter(ctx, address, collection); } @Override public synchronized OutputCommitter getOutputCommitter( TaskAttemptContext arg0) throws IOException { return new OutputCommitter(){ @Override public void abortTask(TaskAttemptContext ctx) throws IOException { } @Override public void commitTask(TaskAttemptContext ctx) throws IOException { } @Override public boolean needsTaskCommit(TaskAttemptContext arg0) throws IOException { return true; } @Override public void setupJob(JobContext ctx) throws IOException { } @Override public void setupTask(TaskAttemptContext ctx) throws IOException { } }; } /** * Write out the LuceneIndex to a local temporary location.
* On commit/close the index is copied to the hdfs output directory.
* */ static class SolrRecordWriter extends RecordWriter{ /**Solr的地址*/ SolrServer server; /**批处理提交的数量**/ int batch = 5000; TaskAttemptContext ctx; List docs = new ArrayList (batch); ScheduledExecutorService exec = Executors.newSingleThreadScheduledExecutor(); /** * Opens and forces connect to CloudSolrServer * * @param address */ public SolrRecordWriter(final TaskAttemptContext ctx, String address, String collection) { try { this.ctx = ctx; server = new HttpSolrServer(address); exec.scheduleWithFixedDelay(new Runnable(){ public void run(){ ctx.progress(); } }, 1000, 1000, TimeUnit.MILLISECONDS); } catch (Exception e) { RuntimeException exc = new RuntimeException(e.toString(), e); exc.setStackTrace(e.getStackTrace()); throw exc; } } /** * On close we commit */ @Override public void close(final TaskAttemptContext ctx) throws IOException, InterruptedException { try { if (docs.size() > 0) { server.add(docs); docs.clear(); } server.commit(); } catch (SolrServerException e) { RuntimeException exc = new RuntimeException(e.toString(), e); exc.setStackTrace(e.getStackTrace()); throw exc; } finally { server.shutdown(); exec.shutdownNow(); } } /** * We add the indexed documents without commit */ @Override public void write(Writable key, SolrInputDocument doc) throws IOException, InterruptedException { try { docs.add(doc); if (docs.size() >= batch) { server.add(docs); docs.clear(); } } catch (SolrServerException e) { RuntimeException exc = new RuntimeException(e.toString(), e); exc.setStackTrace(e.getStackTrace()); throw exc; } } } }
SolrStore函数
package com.pig.support.solr; import java.io.IOException; import java.util.Properties; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.OutputFormat; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.pig.ResourceSchema; import org.apache.pig.ResourceSchema.ResourceFieldSchema; import org.apache.pig.ResourceStatistics; import org.apache.pig.StoreFunc; import org.apache.pig.StoreMetadata; import org.apache.pig.data.Tuple; import org.apache.pig.impl.util.UDFContext; import org.apache.pig.impl.util.Utils; import org.apache.solr.common.SolrInputDocument; /** * * Create a lucene index * */ public class SolrStore extends StoreFunc implements StoreMetadata { private static final String SCHEMA_SIGNATURE = "solr.output.schema"; ResourceSchema schema; String udfSignature; RecordWriterwriter; String address; String collection; public SolrStore(String address, String collection) { this.address = address; this.collection = collection; } public void storeStatistics(ResourceStatistics stats, String location, Job job) throws IOException { } public void storeSchema(ResourceSchema schema, String location, Job job) throws IOException { } @Override public void checkSchema(ResourceSchema s) throws IOException { UDFContext udfc = UDFContext.getUDFContext(); Properties p = udfc.getUDFProperties(this.getClass(), new String[] { udfSignature }); p.setProperty(SCHEMA_SIGNATURE, s.toString()); } public OutputFormat getOutputFormat() throws IOException { // not be used return new SolrOutputFormat(address, collection); } /** * Not used */ @Override public void setStoreLocation(String location, Job job) throws IOException { FileOutputFormat.setOutputPath(job, new Path(location)); } @Override public void setStoreFuncUDFContextSignature(String signature) { this.udfSignature = signature; } @SuppressWarnings({ "unchecked", "rawtypes" }) @Override public void prepareToWrite(RecordWriter writer) throws IOException { this.writer = writer; UDFContext udc = UDFContext.getUDFContext(); String schemaStr = udc.getUDFProperties(this.getClass(), new String[] { udfSignature }).getProperty(SCHEMA_SIGNATURE); if (schemaStr == null) { throw new RuntimeException("Could not find udf signature"); } schema = new ResourceSchema(Utils.getSchemaFromString(schemaStr)); } /** * Shamelessly copied from : https://issues.apache.org/jira/secure/attachment/12484764/NUTCH-1016-2.0.patch * @param input * @return */ private static String stripNonCharCodepoints(String input) { StringBuilder retval = new StringBuilder(input.length()); char ch; for (int i = 0; i < input.length(); i++) { ch = input.charAt(i); // Strip all non-characters // http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[:Noncharacter_Code_Point=True:] // and non-printable control characters except tabulator, new line // and carriage return if (ch % 0x10000 != 0xffff && // 0xffff - 0x10ffff range step // 0x10000 ch % 0x10000 != 0xfffe && // 0xfffe - 0x10fffe range (ch <= 0xfdd0 || ch >= 0xfdef) && // 0xfdd0 - 0xfdef (ch > 0x1F || ch == 0x9 || ch == 0xa || ch == 0xd)) { retval.append(ch); } } return retval.toString(); } @Override public void putNext(Tuple t) throws IOException { final SolrInputDocument doc = new SolrInputDocument(); final ResourceFieldSchema[] fields = schema.getFields(); int docfields = 0; for (int i = 0; i < fields.length; i++) { final Object value = t.get(i); if (value != null) { docfields++; doc.addField(fields[i].getName().trim(), stripNonCharCodepoints(value.toString())); } } try { if (docfields > 0) writer.write(null, doc); } catch (InterruptedException e) { Thread.currentThread().interrupt(); return; } } }
Pig脚本如下:
--注册依赖文件的jar包 REGISTER ./dependfiles/tools.jar; --注册solr相关的jar包 REGISTER ./solrdependfiles/pigudf.jar; REGISTER ./solrdependfiles/solr-core-4.10.2.jar; REGISTER ./solrdependfiles/solr-solrj-4.10.2.jar; REGISTER ./solrdependfiles/httpclient-4.3.1.jar REGISTER ./solrdependfiles/httpcore-4.3.jar REGISTER ./solrdependfiles/httpmime-4.3.1.jar REGISTER ./solrdependfiles/noggit-0.5.jar --加载HDFS数据,并定义scheaml a = load '/tmp/data' using PigStorage(',') as (sword:chararray,scount:int); --存储到solr中,并提供solr的ip地址和端口号 store d into '/user/search/solrindextemp' using com.pig.support.solr.SolrStore('http://localhost:8983/solr/collection1','collection1'); ~ ~ ~
配置成功之后,我们就可以运行程序,加载HDFS上数据,经过计算处理之后,并将最终的结果,存储到Solr之中,截图如下:
成功之后,我们就可以很方便的在solr中进行毫秒级别的操作了,例如各种各样的全文查询,过滤,排序统计等等!
同样的方式,我们也可以将索引存储在ElasticSearch中,关于如何使用Pig和ElasticSearch集成,散仙也会在后面的文章中介绍,敬请期待!
想了解更多有关电商互联网公司的搜索技术和大数据技术的使用,请欢迎扫码关注微信公众号:我是攻城师(woshigcs)
本公众号的内容是有关搜索和大数据技术和互联网等方面内容的分享,也是一个温馨的技术互动交流的小家园,有什么问题随时都可以留言,欢迎大家来访!