2-3树和2-3-4树的区不大,2-3树在插入时先找到叶子节点(没有子节点),然后插入,过程中如果已经是3Node(2 key)就分裂,向上冒泡,一直可能冒泡到顶上。
2-3-4树则在向下找叶子节点时就做调整,把4Node(3 key)提前分裂掉,为下级节点腾出空间,所以叶子节点插入后不会不停向上冒泡。
2-3-4树冗余更大,如果不提前分裂就是2-3树
红黑树是2-3-4树的2节点表示,采用左倾和旋转来简化和冒泡,Rober Segwick的ppt很经典
B+树感觉都是数据库中数据和索引的关系。索引可以没有,有了是用来加速某种查找。
在数据增删时索引维护时个问题。
顺便提下skip list, 对排序好的数据提取N个做索引,再对N个做同样采样索引,重复向上。对于大量数据很好理解,也很容易实现。索引和数据分开。
2-3树删除算法比较复杂,这里没实现。仅仅实现了插入和搜索,测试结果:
E A R C H X M P L A C E H L M P R X (A C) (E) (H L) (M) (P) (R) (X) 16 7 15 15 18 3 6 15 5 11 9 12 7 10 19 18 12 14 2 12 2 3 5 6 7 9 10 11 12 14 15 16 18 19 (2) (3 (5) 6) (7) (9 (10) (11) (12 14) 15) (16) (18) (19)
#include#include #include #include #include typedef int T; typedef struct TreeNodeT { T v; //value left T v2; //value right int twins; struct TreeNodeT *up; struct TreeNodeT *left; struct TreeNodeT *center; //center if twins node struct TreeNodeT *right; } TreeNode; typedef int Callback(TreeNode *node, int n, int level, void *ctx); //return stop or not TreeNode *tree_del(TreeNode *node, T v); //TODO TreeNode *tree_top(TreeNode *e) { TreeNode *top = NULL; while (e && e->up) top = e->up; return top; } int tree_callback_locate(TreeNode *node, int n, int level, void *ctx) { T v = n == 0 ? node->v : node->v2; T t = (T) ctx; return v == t; } int tree_callback_verify(TreeNode *node, int n, int level, void *ctx) { assert(ctx); T v = n == 0 ? node->v : node->v2; T *last = (T *) ctx; assert(v > *last); *last = v; return 0; } int tree_callback_print_h(TreeNode *node, int n, int level, void *ctx) { printf("%d ", n == 0 ? node->v : node->v2); return 0; } int tree_callback_print_hc(TreeNode *node, int n, int level, void *ctx) { printf("%c ", n == 0 ? node->v : node->v2); return 0; } int tree_callback_print_v(TreeNode *node, int n, int level, void *ctx) { int i; for (i = 0; i < level; ++i) { printf("\t"); } if (n == 0) printf("("); printf("%d", n == 0 ? node->v : node->v2); if ((node->twins && n == 1) || !node->twins) printf(")"); printf("\n"); return 0; } int tree_callback_print_vc(TreeNode *node, int n, int level, void *ctx) { int i; for (i = 0; i < level; ++i) { printf("\t"); } if (n == 0) printf("("); printf("%c", n == 0 ? node->v : node->v2); if ((node->twins && n == 1) || !node->twins) printf(")"); printf("\n"); return 0; } /* return stop or not */ int tree_walk(TreeNode *node, int level, Callback cb, void *ctx) { if (node->left && tree_walk(node->left, level + 1, cb, ctx)) return 1; if (cb(node, 0, level, ctx)) return 1; if (node->twins) { if (node->center && tree_walk(node->center, level + 1, cb, ctx)) return 1; if (cb(node, 1, level, ctx)) return 1; } if (node->right && tree_walk(node->right, level + 1, cb, ctx)) return 1; return 0; } static void tree_node_init_single(TreeNode* node, T v, TreeNode* left, TreeNode* right) { //shrink left to Single Node node->v = v; node->twins = 0; node->v2 = 0; node->left = left; if (left) left->up = node; node->center = NULL; node->right = right; if (right) right->up = node; } static TreeNode* tree_node_alloc(TreeNode* up, T v, TreeNode* left, TreeNode* right) { // new upper Single Node TreeNode* node = (TreeNode*) calloc(sizeof(TreeNode), 1); tree_node_init_single(node, v, left, right); node->up = up; return node; } static TreeNode *tree_node_insert(TreeNode *node, T v, TreeNode *left, TreeNode *right); static TreeNode *tree_node_split(TreeNode *node, T v1, T v2, T v3, // TreeNode *n1, TreeNode *n2, TreeNode *n3, TreeNode *n4) { TreeNode *left = node; //reuse node //shrink left to Single Node tree_node_init_single(left, v1, n1, n2); //Create new right Single Node TreeNode *right = tree_node_alloc(node->up, v3, n3, n4); TreeNode *up = node->up; if (up == NULL) { // new upper Single Node up = tree_node_alloc(NULL, v2, left, right); return up; } else { //upper node exist, escalate return tree_node_insert(up, v2, left, right); } } /* insert v to up: * if up is single, make it twins * if up is twins, split * return NULL if no new top tree node created; */ static TreeNode *tree_node_insert(TreeNode *node, T v, TreeNode *left, TreeNode *right) { if (!node->twins) { //Single node -> Twins node->twins = 1; if (v < node->v) { node->v2 = node->v; node->v = v; node->left = left; node->center = right; } else { node->v2 = v; node->center = left; node->right = right; } return NULL; } else { //twins, must have 3 child, split and escalate the middle one if (v < node->v) { node = tree_node_split(node, v, node->v, node->v2, left, right, node->center, node->right); } else if (v < node->v2) { node = tree_node_split(node, node->v, v, node->v2, node->left, left, right, node->right); } else { node = tree_node_split(node, node->v, node->v2, v, node->left, node->center, left, right); } return node; } } static void tree_node_check(TreeNode* node) { assert(node); assert( (node->left && node->right) || (node->left == NULL && node->right == NULL)); if (node->left) assert(node->left->up == node); if (node->center) assert(node->center->up == node); if (node->right) assert(node->right->up == node); } /* NULL: v exists, no action */ static TreeNode *tree_search_leaf_add(TreeNode *node, T v) { tree_node_check(node); if (v == node->v || (node->twins && node->v2 == v)) return NULL; if (node->left) { // has children, 2 or 3 if (v < node->v) //less than v return tree_search_leaf_add(node->left, v); if (node->twins && v < node->v2) //twins node return tree_search_leaf_add(node->center, v); else return tree_search_leaf_add(node->right, v); } return node; } /* TreeNode grow strategy: * 1. Grow up from leaf! * 2. Single -> Twins, so each twins node must have 3 children * 3. Twins -> 3 Single, so each new parent must have 2 children * 4. left and right must exist! * 5. if twins, center must exist! */ TreeNode *tree_add(TreeNode *tree, T v) { if (tree == NULL) return tree_node_alloc(NULL, v, NULL, NULL); tree_node_check(tree); TreeNode *leaf = tree_search_leaf_add(tree, v); if (!leaf) //already exits on tree return tree; TreeNode *node = tree_node_insert(leaf, v, NULL, NULL); return node ? node : tree; } void tree_test_number(int n, int random) { TreeNode* t; int i; T last = 0; T v; for (i = 1; i <= n; ++i) { v = random ? ((double) rand() * n) / RAND_MAX : i; printf("%d ", v); t = tree_add(t, v); // tree_walk(t, 0, tree_callback_print_v, 0); // printf("===================\n"); } printf("\n"); tree_walk(t, 0, tree_callback_verify, &last); tree_walk(t, 0, tree_callback_print_h, NULL); printf("\n"); tree_walk(t, 0, tree_callback_print_v, 0); } void tree_test_chars() { TreeNode *t = NULL; int i; T last = 0; char c; // http://blog.csdn.net/yang_yulei/article/details/26066409 char* str = "EARCHXMPL"; for (i = 0; i < strlen(str); ++i) { c = str[i]; //random(); printf("%c ", c); t = tree_add(t, c); } printf("\n"); tree_walk(t, 0, tree_callback_verify, &last); tree_walk(t, 0, tree_callback_print_hc, NULL); printf("\n"); tree_walk(t, 0, tree_callback_print_vc, NULL); } int main(int argc, char **argv) { tree_test_chars(); tree_test_number(20, 1); return EXIT_SUCCESS; }