Lucene/Solr(5.0) 源码初探- Lucene Facet SortedSetDocValues (三)

阅读更多
前面粗略研究了SortedSetDocValues如何index,这章研究粗略看下如何在搜索过程中做facet,还是以lucene 5.0自带的例子做为开头:
//SimpleSortedSetFacetsExample
private List search() throws IOException {
    DirectoryReader indexReader = DirectoryReader.open(indexDir);
    IndexSearcher searcher = new IndexSearcher(indexReader);
    /**建立SortedSetDocValuesReader 实例,并且将SortedSetDocValues 做了一部分预处理*/
    SortedSetDocValuesReaderState state = new DefaultSortedSetDocValuesReaderState(indexReader);

    // Aggregatses the facet counts
    FacetsCollector fc = new FacetsCollector();

    // MatchAllDocsQuery is for "browsing" (counts facets
    // for all non-deleted docs in the index); normally
    // you'd use a "normal" query:
    //先对所有的文档进行搜索,拿出所有的文档id,再来进行facet
    FacetsCollector.search(searcher, new MatchAllDocsQuery(), 10, fc);

    // Retrieve results
    //对每个文档的$facets field 值进行统计
    Facets facets = new SortedSetDocValuesFacetCounts(state, fc);

    List results = new ArrayList<>();
   //开始对特定条件的facet进行归并
    results.add(facets.getTopChildren(10, "Author"));
    results.add(facets.getTopChildren(10, "Publish Year"));
    indexReader.close();
    
    return results;
  }


先看看SortedSetDocValuesReaderState 都做了什么?



/** Creates this, pulling doc values from the specified
   *  field. */
  public DefaultSortedSetDocValuesReaderState(IndexReader reader, String field) throws IOException {
    this.field = field;
    this.origReader = reader;

    // We need this to create thread-safe MultiSortedSetDV
    // per collector:
    topReader = SlowCompositeReaderWrapper.wrap(reader);
   /**读取上章存储的数据字典集主要包括上章提及的OrdMap,ordinalCountsm,OrdinalIndex*/
    SortedSetDocValues dv = topReader.getSortedSetDocValues(field);
    if (dv == null) {
      throw new IllegalArgumentException("field \"" + field + "\" was not indexed with SortedSetDocValues");
    }
    if (dv.getValueCount() > Integer.MAX_VALUE) {
      throw new IllegalArgumentException("can only handle valueCount < Integer.MAX_VALUE; got " + dv.getValueCount());
    }
   //已经存储多少个docvalues(去重)
    valueCount = (int) dv.getValueCount();

    // TODO: we can make this more efficient if eg we can be
    // "involved" when OrdinalMap is being created?  Ie see
    // each term/ord it's assigning as it goes...
    String lastDim = null;
    int startOrd = -1;

    // TODO: this approach can work for full hierarchy?;
    // TaxoReader can't do this since ords are not in
    // "sorted order" ... but we should generalize this to
    // support arbitrary hierarchy:
    //循环查找所有存储的docvalues,确定同一个dim 在存储的binary的范围
    for(int ord=0;ord 
 

回想下前面讲过,所有的dim和label会拼接在一起生成一个长字符串存储,在例子中,用户一般是根据其自定义的dim来查找比如例子里面根据"Author" 或者"Publish Year"来查找,所以在读取term的的时候要确定前几个term是属于同一个dim(例如"Author"),prefixToOrdRange 就是为了确定每一个dim在所有的存储docvalues的范围,以便做后续统计。

再来看SortedSetDocValuesFacetCounts 做了什么:


 public SortedSetDocValuesFacetCounts(SortedSetDocValuesReaderState state, FacetsCollector hits)
      throws IOException {
    this.state = state;
    this.field = state.getField();
    dv = state.getDocValues();    
    counts = new int[state.getSize()];
    //System.out.println("field=" + field);
    //开始统计所有的term在文档的出现次数
    count(hits.getMatchingDocs());
  }


 private final void count(List matchingDocs) throws IOException {
    //System.out.println("ssdv count");

    MultiDocValues.OrdinalMap ordinalMap;

    // TODO: is this right?  really, we need a way to
    // verify that this ordinalMap "matches" the leaves in
    // matchingDocs...
    if (dv instanceof MultiSortedSetDocValues && matchingDocs.size() > 1) {
      ordinalMap = ((MultiSortedSetDocValues) dv).mapping;
    } else {
      ordinalMap = null;
    }
    
    IndexReader origReader = state.getOrigReader();

    for(MatchingDocs hits : matchingDocs) {

      LeafReader reader = hits.context.reader();
      //System.out.println("  reader=" + reader);
      // LUCENE-5090: make sure the provided reader context "matches"
      // the top-level reader passed to the
      // SortedSetDocValuesReaderState, else cryptic
      // AIOOBE can happen:
      if (ReaderUtil.getTopLevelContext(hits.context).reader() != origReader) {
        throw new IllegalStateException("the SortedSetDocValuesReaderState provided to this class does not match the reader being searched; you must create a new SortedSetDocValuesReaderState every time you open a new IndexReader");
      }
      
      SortedSetDocValues segValues = reader.getSortedSetDocValues(field);
      if (segValues == null) {
        continue;
      }

      DocIdSetIterator docs = hits.bits.iterator();

      // TODO: yet another option is to count all segs
      // first, only in seg-ord space, and then do a
      // merge-sort-PQ in the end to only "resolve to
      // global" those seg ords that can compete, if we know
      // we just want top K?  ie, this is the same algo
      // that'd be used for merging facets across shards
      // (distributed faceting).  but this has much higher
      // temp ram req'ts (sum of number of ords across all
      // segs)
      if (ordinalMap != null) {
        final int segOrd = hits.context.ord;
        final LongValues ordMap = ordinalMap.getGlobalOrds(segOrd);

        int numSegOrds = (int) segValues.getValueCount();

        if (hits.totalHits < numSegOrds/10) {
          //System.out.println("    remap as-we-go");
          // Remap every ord to global ord as we iterate:
          int doc;
          while ((doc = docs.nextDoc()) != DocIdSetIterator.NO_MORE_DOCS) {
            //System.out.println("    doc=" + doc);
            segValues.setDocument(doc);
            int term = (int) segValues.nextOrd();
            while (term != SortedSetDocValues.NO_MORE_ORDS) {
              //System.out.println("      segOrd=" + segOrd + " ord=" + term + " globalOrd=" + ordinalMap.getGlobalOrd(segOrd, term));
              counts[(int) ordMap.get(term)]++;
              term = (int) segValues.nextOrd();
            }
          }
        } else {
          //System.out.println("    count in seg ord first");

          // First count in seg-ord space:
          final int[] segCounts = new int[numSegOrds];
          int doc;
          while ((doc = docs.nextDoc()) != DocIdSetIterator.NO_MORE_DOCS) {
            //System.out.println("    doc=" + doc);
            segValues.setDocument(doc);
            int term = (int) segValues.nextOrd();
            while (term != SortedSetDocValues.NO_MORE_ORDS) {
              //System.out.println("      ord=" + term);
              segCounts[term]++;
              term = (int) segValues.nextOrd();
            }
          }

          // Then, migrate to global ords:
          for(int ord=0;ord

//Lucene50DocValuesProducer
@Override
  public SortedSetDocValues getSortedSet(FieldInfo field) throws IOException {
    SortedSetEntry ss = sortedSets.get(field.name);
    if (ss.format == SORTED_SINGLE_VALUED) {
      final SortedDocValues values = getSorted(field);
      return DocValues.singleton(values);
    } else if (ss.format != SORTED_WITH_ADDRESSES) {
      throw new AssertionError();
    }

    final long valueCount = binaries.get(field.name).count;
    // we keep the byte[]s and list of ords on disk, these could be large
    final LongBinaryDocValues binary = (LongBinaryDocValues) getBinary(field);
    final LongValues ordinals = getNumeric(ords.get(field.name));
    // but the addresses to the ord stream are in RAM
    final MonotonicBlockPackedReader ordIndex = getOrdIndexInstance(field, ordIndexes.get(field.name));
    
    return new RandomAccessOrds() {
      long startOffset;
      long offset;
      long endOffset;
      
      @Override
      public long nextOrd() {
        if (offset == endOffset) {
          return NO_MORE_ORDS;
        } else {
        //通过确定的边界查找该文档包含准确的termid,?Ordinals =pending ords
          long ord = ordinals.get(offset);
          offset++;
          return ord;
        }
      }

      @Override
      public void setDocument(int docID) {
        /**通过文档id查找在Ords中的边界,OrdIndex = pendingCounts ordCounts*/
        startOffset = offset = ordIndex.get(docID);
        endOffset = ordIndex.get(docID+1L);
      }

      @Override
      public BytesRef lookupOrd(long ord) {
       //返回存储的term内容,ord传入的是termid ,同样查找过程需要OrdMap辅助
        return binary.get(ord);
      }

      @Override
      public long getValueCount() {
        return valueCount;
      }
      
      @Override
      public long lookupTerm(BytesRef key) {
        if (binary instanceof CompressedBinaryDocValues) {
          return ((CompressedBinaryDocValues)binary).lookupTerm(key);
        } else {
          return super.lookupTerm(key);
        }
      }

      @Override
      public TermsEnum termsEnum() {
        if (binary instanceof CompressedBinaryDocValues) {
          return ((CompressedBinaryDocValues)binary).getTermsEnum();
        } else {
          return super.termsEnum();
        }
      }

      @Override
      public long ordAt(int index) {
        return ordinals.get(startOffset + index);
      }

      @Override
      public int cardinality() {
        return (int) (endOffset - startOffset);
      }
    };
  }
  


最后看归并的过程:



@Override
  public FacetResult getTopChildren(int topN, String dim, String... path) throws IOException {
    if (topN <= 0) {
      throw new IllegalArgumentException("topN must be > 0 (got: " + topN + ")");
    }
    if (path.length > 0) {
      throw new IllegalArgumentException("path should be 0 length");
    }
    //每个dim在存储的docvalues的范围
    OrdRange ordRange = state.getOrdRange(dim);
    if (ordRange == null) {
      throw new IllegalArgumentException("dimension \"" + dim + "\" was not indexed");
    }
    return getDim(dim, ordRange, topN);
  }

  private final FacetResult getDim(String dim, OrdRange ordRange, int topN) {

    TopOrdAndIntQueue q = null;

    int bottomCount = 0;

    int dimCount = 0;
    int childCount = 0;

    TopOrdAndIntQueue.OrdAndValue reuse = null;
    //System.out.println("getDim : " + ordRange.start + " - " + ordRange.end);
    /**在符合客户定义的dim的范围查看其term的频率,由于涉及到topN的定义,返回
前N个频率最多的必然涉及到最小堆的排序,TopOrdAndIntQueue就是用来排TopN。
    for(int ord=ordRange.start; ord<=ordRange.end; ord++) {
      //System.out.println("  ord=" + ord + " count=" + counts[ord]);
      if (counts[ord] > 0) {
        dimCount += counts[ord];
        childCount++;
        if (counts[ord] > bottomCount) {
          if (reuse == null) {
            reuse = new TopOrdAndIntQueue.OrdAndValue();
          }
          reuse.ord = ord;
          reuse.value = counts[ord];
          if (q == null) {
            // Lazy init, so we don't create this for the
            // sparse case unnecessarily
            q = new TopOrdAndIntQueue(topN);
          }
          reuse = q.insertWithOverflow(reuse);
          if (q.size() == topN) {
            bottomCount = q.top().value;
          }
        }
      }
    }

    if (q == null) {
      return null;
    }

    LabelAndValue[] labelValues = new LabelAndValue[q.size()];
    for(int i=labelValues.length-1;i>=0;i--) {
      TopOrdAndIntQueue.OrdAndValue ordAndValue = q.pop();
      final BytesRef term = dv.lookupOrd(ordAndValue.ord);
      String[] parts = FacetsConfig.stringToPath(term.utf8ToString());
      labelValues[i] = new LabelAndValue(parts[1], ordAndValue.value);
    }
    
    return new FacetResult(dim, new String[0], dimCount, labelValues, childCount);
  }




到此所有的SortedSetDocValues 查找和索引都基本分析完结了。

你可能感兴趣的:(Lucene/Solr,4.0+,Facet)