- 运用IC-CAP软件对射频集成电路的表征与参数分析
Keep-Follow
课程设计
摘要本文聚焦于运用IC-CAP软件对射频集成电路进行全面表征与参数分析。详细阐述IC-CAP软件在该领域的功能特性,通过具体的射频集成电路案例,深入介绍使用软件进行直流参数测试、小信号S参数分析、大信号特性表征的流程与方法。探讨如何依据分析结果优化射频集成电路性能,展现软件在助力电路设计、提升产品质量方面的关键作用,为射频集成电路研发工程师提供极具价值的技术参考。关键词IC-CAP软件;射频集成电
- k8s学习笔记(3)--- kubernetes核心技术概念
梦谜
k8s基础知识k8基本核心概念
kubernetes核心技术概念1.容器(Container)2.API对象3.集群(Cluster)4.Master5.Node6.Pod7.复制控制器(ReplicationController,RC)8.副本集(ReplicaSet,RS)9.部署(Deployment)10.服务(Service)11.任务(Job)12.定时任务(CronJob)13.后台支撑服务集(DaemonSet)
- 微软 LIDA 库:基于大模型的自动化数据分析与可视化
窝窝和牛牛
microsoft数据分析
微软LIDA库:基于大模型的自动化数据分析与可视化一、核心架构与LLM交互流程调用LLM生成数据摘要基于LLM推理分析目标LLM生成可视化代码结合图像生成模型优化原始数据Summarizer模块结构化摘要GoalExplorer模块可视化目标列表VizGenerator模块可执行图表代码Infographer模块风格化信息图表二、LLM交互核心功能1.多模型支持架构兼容主流LLM服务商:通过统一接
- CST Microwave Studio助力射频电路多物理场耦合分析
FindEveryone
课程设计
摘要本文重点阐述CSTMicrowaveStudio在射频电路多物理场耦合分析中的关键作用。通过解析射频电路中涉及的电磁场、热场、机械场等多物理场耦合现象,详细介绍如何运用CSTMicrowaveStudio构建多物理场联合模型,进行全面的仿真分析。结合具体案例,深入探讨多物理场耦合对射频电路性能的影响,并依据仿真结果提出有效的优化策略,为提升射频电路在复杂工作环境下的可靠性和稳定性提供理论依据与
- 网络管理 Introducing Meraki – Your Complete Network Management S
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介Meraki网络管理平台是一款专为企业级网络管理员设计的网络安全解决方案。它帮助用户轻松管理和监控其组织中的所有网络设备、VLANs及其设置。Meraki网络管理平台包括许多内置功能,如集中管理,安全,可视化分析等。此外,Meraki还提供强大的RESTAPI接口,开发者可以利用这些API来定制属于自己的应用。通过将现有工具、流程和工具合成为一体的网络管理解决方
- 算法设计与分析4(变治法)
songx_99
算法设计与分析算法
变治法将问题转化为一个或数个有一定关联当形式上不同的更加简单或更加好解决的子问题。变治法的应用:预排序思想用预排序可以简化许多问题,如检查元素唯一性,检查出现次数最多的元素等堆算法堆的定义首先它是一个完全二叉树,完全二叉树表明树的每一层都是满的,只有最后一层最右边的元素有可能缺位。且父结点的值大于它的两个子节点,则称是一个大根堆,若值小于两个子节点,称小根堆堆化有向下调整,向上调整两种,大致思路相
- 计算机毕业设计指南
晴天毕设
课程设计毕业设计java毕设开发语言
毕业设计是计算机专业学生展示综合能力的重要环节,不仅是对所学知识的总结,也是进入职场或深造前的实战演练。本文将从选题、需求分析、系统设计、编码实现、测试优化、论文撰写、答辩准备等方面,为你提供一份详细的毕业设计指南。如果有其他问题,可以点击文章末尾名片咨询,可免费分享源码1.选题阶段选题是毕业设计的起点,直接影响后续工作的难度和完成质量。选题原则兴趣驱动:选择自己感兴趣的方向,能够激发研究动力。创
- 3.20 补题(二分模板,反向搜索)
ZZZS0516
深度优先算法图论c++
目录D-填涂颜色(搜索)题目描述思路分析代码实现F-跳石头(二分模板)题目描述思路分析代码实现D-填涂颜色(搜索)链接:P1162填涂颜色-洛谷题目描述由数字000组成的方阵中,有一任意形状的由数字111构成的闭合圈。现要求把闭合圈内的所有空间都填写成222。例如:6×66\times66×6的方阵(n=6n=6n=6),涂色前和涂色后的方阵如下:如果从某个000出发,只向上下左右444个方向移动
- 深度剖析哈希表数据结构:原理、冲突解决与优化策略
麻辣酸甜
笔记
摘要哈希表作为一种高效的数据结构,在计算机科学领域广泛应用。本文深入探讨哈希表的工作原理,详细分析常见的冲突解决方法,如开放地址法、链地址法等,并进一步研究哈希表在不同场景下的优化策略,旨在帮助读者全面理解哈希表数据结构及其应用。一、引言在计算机程序中,快速查找和插入数据是常见需求。哈希表以其平均时间复杂度为O(1)的高效查找和插入特性,成为解决这类问题的有力工具。从数据库索引到编程语言的集合类实
- 通过启用Ranger插件的Hive审计日志同步到Doris做分析
fzip
DorisHivedoris审计hive
以下是基于ApacheDoris的RangerHive审计日志同步方案详细步骤,结合审计日志插件与数据导入策略实现:一、Doris环境准备1.创建审计日志库表参考搜索结果的表结构设计,根据Ranger日志字段调整建表语句:CREATEDATABASEIFNOTEXISTSranger_audit;CREATETABLEIFNOTEXISTSranger_audit_hive_log(repoTyp
- AWS SAP学习笔记-概念
HainesFreeman
AWSaws
1、什么是ETL应用程序,举个例子说明?ETL(Extract,Transform,Load)应用程序是一种用于数据处理和迁移的工具或程序,它主要负责从多个数据源提取数据,对数据进行转换和清洗,然后将处理后的数据加载到目标数据仓库或数据库中。ETL应用程序广泛应用于数据集成、数据仓库构建、数据分析和数据迁移等场景。ETL的三个主要步骤:Extract(提取):从各种数据源(如数据库、文件、API等
- 初始OpenCV
指尖下的技术
OpenCVopencv人工智能计算机视觉
OpenCV是一个功能强大、应用广泛的计算机视觉库,它为开发人员提供了丰富的工具和算法,可以帮助他们快速构建各种视觉应用。随着计算机视觉技术的不断发展,OpenCV也将会继续发挥重要的作用。OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及机器学习领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。首先介绍一下OpenCV
- WRF移动嵌套结合伏羲模型与CFD(PALM)高精度多尺度降尺度分析研究
Hardess-god
WRF算法人工智能
随着大气科学与数值模拟技术的发展,高精度多尺度气象模拟日益成为科研与应用的热点问题。本文将详细介绍如何使用WRF移动嵌套技术结合伏羲(Fuxi)模型,并通过CFD模型PALM实现精细化降尺度,以满足城市或区域局地精细化气象预报的需求。1.技术路线概述WRF移动嵌套(MovingNesting):动态调整高分辨率嵌套网格位置,追踪天气系统(如台风、强对流系统)以提高局地预报精度。伏羲(Fuxi)模型
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- “三分钟”带你看懂批次管理!(一)
wms系统
一、批次管理的定义与重要性1.批次管理的定义:批次管理是一种针对产品或物料的管理方法,它将同一生产周期或相同条件下生产、具有一致质量特征、生产信息和使用属性的产品组作为一个批次,进行分类、标识、追踪和管理。2.批次管理的重要性:提高可追溯性:精准追踪物料和产品的来源、去向及生命周期,在质量问题或召回需求出现时,能快速锁定问题批次,降低损失。增强质量控制:监控不同批次产品的质量指标,及时发现和分析质
- 分析K8S中Node状态为`NotReady`问题
网络飞鸥
Kuberneteskubernetes容器云原生
在Kubernetes(k8s)集群中,Node状态为NotReady通常意味着节点上存在某些问题,下面为你分析正常情况下节点应运行的容器以及解决NotReady状态的方法。正常情况下Node节点应运行的容器1.kubeletkubelet是节点上的核心组件,它负责与控制平面通信,管理节点上的容器生命周期。它通常作为系统服务运行,而不是以容器形式存在,但也有使用容器化部署的情况。2.kube-pr
- 行业分析---小米汽车2024全年财报
智能汽车人
人工智能行业研究汽车自动驾驶
1背景其实,关于小米汽车,笔者之前已经多次介绍过了,包括小米汽车成功的原因、智驾进展以及雷军个人的魅力,见博客《自动驾驶---小米汽车智驾进展》和《微自传系列---雷军》。小米汽车取得的成绩,出乎很多人的意料,其它新势力车企花了5---10年的时间,小米汽车三年就成功造出了第一辆车,在小米SU7月销2万+的同时,获得了非常不错的口碑。并且在刚刚发布的财报中,小米汽车在第一个完整财年的财务表现也是相
- DeepSeek重塑软件行业:研发工程师的机遇与挑战
LiuSid7
人工智能llama语言模型ai
人工智能技术的浪潮正以前所未有的速度重塑软件行业,而DeepSeek作为其中的代表性技术,已成为研发工程师日常工作中不可忽视的变革力量。从代码生成到架构优化,从效率提升到职业生态重构,DeepSeek正在重新定义工程师的工作范式。以下从技术革新、职业发展、行业趋势三个维度,分析其对研发工程师的核心影响。一、技术革新:从“重复劳动”到“创造力释放”代码生产的效率革命DeepSeek通过自然语言指令生
- 机器学习结合伏羲模型高精度多尺度气象分析与降尺度实现
Hardess-god
WRF算法人工智能
随着人工智能的发展,机器学习技术在气象预报领域展现出巨大潜力。本文详细探讨如何结合机器学习(ML)和伏羲模型进行高精度多尺度气象模拟分析,并提供详细的实现步骤和相关代码。1.研究目标与技术路线目标:结合机器学习模型与伏羲气象模式,实现区域和局地高精度降尺度。技术路线:伏羲模型提供大尺度气象数据和预报使用机器学习模型(如CNN、LSTM、XGBoost)进行降尺度2.数据准备与处理2.1气象数据获取
- K8S之POD调度
〰振振 ༽
K8Skubernetesdocker容器
K8S-Pod调度1、Deployment/RC:全自动调度简述Deployment或RC的主要功能就是自动部署一个容器应用的多份副本,及持续监控副本的数量并维持该值。创建Deploymentkubectlcreate-fnginx-deployment.yaml#nginx-deployment.yamlapiVersion:apps/v1kind:Deploymentmetadata:name
- MSE分类时梯度消失的问题详解和交叉熵损失的梯度推导
阿正的梦工坊
MachineLearningDeepLearning分类人工智能深度学习机器学习
下面是MSE不适合分类任务的解释,包含梯度推导。以及交叉熵的梯度推导。前文请移步笔者的另一篇博客:大模型训练为什么选择交叉熵损失(Cross-EntropyLoss):均方误差(MSE)和交叉熵损失的深入对比MSE分类时梯度消失的问题详解我们深入探讨MSE(均方误差)的梯度特性,结合公式推导和分析,解释为什么在预测值接近0或1时梯度趋于0,以及这背后的含义。我会尽量保持清晰且严谨,适合高理论水平的
- 华为OD机试 - 宜居星球改造计划 - 图的多源BFS(Python/JS/C/C++ 2023 B卷 100分)
哪 吒
华为od宽度优先python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述2XXX年,人类通过对火星的大气进行宜居改造分析,使得火星已在理
- 华为OD机试 - 书籍叠放 - 逻辑分析(Python/JS/C/C++ 2024 B卷 200分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述书籍的长、宽都是整数对应(l,w)。如果书A的长宽度都比B长宽大
- 国际电商仓发(FBT)业务深度研究报告:以TikTok为例
萧十一郎@
知识科普人工智能
目录一、引言1.1研究背景与目的1.2研究方法与数据来源二、国际电商仓发(FBT)业务概述2.1FBT业务定义与运作模式2.2FBT业务在国际电商中的地位与作用三、TikTokFBT业务案例分析3.1TikTokFBT业务发展历程3.2TikTokFBT业务服务内容与优势3.3TikTokFBT业务的市场策略与布局四、国际电商仓发(FBT)业务成功案例及经验借鉴4.1成功案例展示4.2经验总结与启
- 医疗旅游发展方案
cainiaojunshi
旅游软件思路预算方案
一、策划目标在深入剖析医疗旅游市场环境的基础上,设计出针对中低端市场的医疗旅游产品,通过有效的冷启动推广策略,实现项目的初步盈利与客户积累,逐步树立专业品牌形象,建立客户信任机制,形成可复制、可规模化的商业模式。二、医疗旅游发展环境分析(一)费用对比以根管治疗为例,国内外费用差异显著。以下通过表格对比能更直观呈现:项目国内费用(人民币)国外(以美国为例)费用(人民币)根管治疗费用500-2000元
- k8s主要控制器简述(一)ReplicaSet与Deployment
小刘爱喇石( ˝ᗢ̈˝ )
kubernetes容器云原生
目录一、ReplicaSet关键特性示例解释支持的Operator二、Deployment1.声明式更新示例2.滚动更新示例3.回滚示例4.ReplicaSet管理示例5.自动恢复示例6.扩展和缩容示例示例一、ReplicaSetReplicaSet是Kubernetes中的一个核心控制器,用于确保指定数量的Pod副本始终处于运行状态。它的主要职责是维护一组稳定的Pod副本,确保在任何时候都有指定
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- AI 赋能应急管理:ChatGPT、DeepSeek、Grok 的应用探索
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)技术的快速发展,大语言模型(LLM)在应急管理领域的应用逐步扩大。ChatGPT、DeepSeek、Grok等AI模型凭借强大的文本处理、数据分析和推理能力,可为灾害预警、应急响应、风险评估等提供高效支持。本文将对比三大AI模型在应急管理中的优势,并探讨其在未来智能化应急管理体系中的应用前景。2.应急管理中的核心挑战应
- DeepSeek-R1 API评测深度解析:揭秘7大常见误区
耶耶Norsea
网络杂烩服务器网络运维
摘要随着SiliconCloud等平台推出DeepSeek-R1服务,市场涌现出大量关于API评测的内容。然而,这些评测中存在7个常见误区,如测试方法缺陷和内容质量参差不齐等问题,影响了用户对DeepSeek-R1的准确理解。本文旨在揭示这些问题,帮助用户更全面地了解该服务。关键词DeepSeek-R1,API评测,常见误区,SiliconCloud,内容质量一、一级目录11.1DeepSeek-
- 每天分析一个开源项目:open_deep_research
申非zz
LLMgithub开源
每天分析一个开源项目:open_deep_research项目链接:langchain-ai/open_deep_research项目介绍项目功能:OpenDeepResearch是一个基于LangGraph的Web研究助手,旨在帮助用户快速生成特定主题的综合性报告。它模拟了OpenAI和Gemini的DeepResearch流程,但提供了更强的自定义能力,允许用户配置模型、Prompt、报告结构
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla