我们将谜题定义为:包含一个初始位置,一个目标位置,以及用于判断是否是有效移动的规则集。
规则集包含两部分:计算从指定位置开始的所有合法移动,以及每次移动的结果位置。
下面先给出表示谜题的抽象类,其中的类型参数P和M表示位置类和移动类。根据这个接口,我们可以写一个简单的串行求解程序,该程序将在谜题空间Puzzle Space中查找,直到找到一个解答或者找遍了整个空间都没有发现答案。注:一个移动M代表一步
/** 表示 搬箱子 之类谜题的抽象类*/ public interface Puzzle{ P initialPosition(); boolean isGoal(P position); Set
legalMoves(P position); P move(P position, M move); }
下面的PuzzleNode代表通过一系列的移动到达的一个位置,其中保存了到达该位置的移动以及前一个Node。只要沿着PuzzleNode链接逐步回溯,就可以重新构建出达到当前位置的移动序列。
/** 用于谜题解决框架的链接节点 */ @Immutable public class PuzzleNode{ final P pos; final M move; final PuzzleNode
prev; public PuzzleNode(P pos, M move, PuzzleNode
prev) { this.pos = pos; this.move = move; this.prev = prev; } List
asMoveList() { List solution = new LinkedList (); for (PuzzleNode n = this; n.move != null; n = n.prev) solution.add(0, n.move); return solution; } }
下面的SequentialPuzzleSolver给出了谜题框架的串行解决方案,它在谜题空间中执行深度优先搜索,当找到解答方案,不一定是最短的解决方案,结束搜索。
/** 串行的谜题解答器*/ public class SequentialPuzzleSolver{ private final Puzzle
puzzle; private final Set
seen = new HashSet
(); public SequentialPuzzleSolver(Puzzle
puzzle) { this.puzzle = puzzle; } public List
solve() { P pos = puzzle.initialPosition(); return search(new PuzzleNode (pos, null, null)); } private List
search(PuzzleNode node) { if (!seen.contains(node.pos)) { seen.add(node.pos); if (puzzle.isGoal(node.pos)) return node.asMoveList(); for (M move : puzzle.legalMoves(node.pos)) { P pos = puzzle.move(node.pos, move); PuzzleNode
child = new PuzzleNode
(pos, move, node); List
result = search(child); if (result != null) return result; } } return null; } }
接下来我们给出并行解决方案,ConcurrentPuzzleSolver中使用了一个内部类SolverTask,这个类扩展了PuzzleNode并实现了Runnable。大多数工作都是在run中完成的:首先计算下一步肯能到达的所有位置,并去掉已经到达的位置,然后判断(这个任务或者其他某个任务)是否已经成功完成,最后将尚未搜索过的位置提交给Executor。
public class ConcurrentPuzzleSolver{ private final Puzzle
puzzle; private final ExecutorService exec; private final ConcurrentMap
seen; protected final ValueLatch
> solution = new ValueLatch >(); public ConcurrentPuzzleSolver(Puzzle puzzle) { this.puzzle = puzzle; this.exec = initThreadPool(); this.seen = new ConcurrentHashMap
(); if (exec instanceof ThreadPoolExecutor) { ThreadPoolExecutor tpe = (ThreadPoolExecutor) exec; tpe.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardPolicy()); } } private ExecutorService initThreadPool() { return Executors.newCachedThreadPool(); } public List
solve() throws InterruptedException { try { P p = puzzle.initialPosition(); exec.execute(newTask(p, null, null)); // block until solution found PuzzleNode solnPuzzleNode = solution.getValue(); return (solnPuzzleNode == null) ? null : solnPuzzleNode.asMoveList(); } finally { exec.shutdown(); } } protected Runnable newTask(P p, M m, PuzzleNode
n) { return new SolverTask(p, m, n); } protected class SolverTask extends PuzzleNode
implements Runnable { SolverTask(P pos, M move, PuzzleNode
prev) { super(pos, move, prev); } public void run() { if (solution.isSet() || seen.putIfAbsent(pos, true) != null) return; // already solved or seen this position if (puzzle.isGoal(pos)) solution.setValue(this); else for (M m : puzzle.legalMoves(pos)) exec.execute(newTask(puzzle.move(pos, m), m, this)); } } }
@ThreadSafe public class ValueLatch{ @GuardedBy("this") private T value = null; private final CountDownLatch done = new CountDownLatch(1); public boolean isSet() { return (done.getCount() == 0); } public synchronized void setValue(T newValue) { if (!isSet()) { value = newValue; done.countDown(); } } public T getValue() throws InterruptedException { done.await(); synchronized (this) { return value; } } }
比较串行和并行算法可知:并发方法引入了一种新形式的限制并去掉了一种原有的限制,新的限制在这个问题域中更合适。串行版本的程序执行深度优先搜索,因此搜索过程将受限于栈的大小。并发版本程序执行广度优先搜索,因此不会受到栈大小的限制。
第一个找到解答的线程还会关闭Executor,从而阻止接受显得任务。要避免处理RejectedExecutionException(等待队列满员或者是Executor关闭后提交的任务),需要将拒绝执行处理器
设置为DiscardPolicy 。
如果不存在解答,那么ConcurrentPuzzleSolver就会永远的等待下去,getSolution一直阻塞下去。
通过记录活动任务数量,当该值为零时将解答设置为null,如下:
public class PuzzleSolverextends ConcurrentPuzzleSolver
{ PuzzleSolver(Puzzle
puzzle) { super(puzzle); } private final AtomicInteger taskCount = new AtomicInteger(0); protected Runnable newTask(P p, M m, PuzzleNode
n) { return new CountingSolverTask(p, m, n); } class CountingSolverTask extends SolverTask { CountingSolverTask(P pos, M move, PuzzleNode
prev) { super(pos, move, prev); taskCount.incrementAndGet(); } public void run() { try { super.run(); } finally { if (taskCount.decrementAndGet() == 0) solution.setValue(null); } } } }
另外,还可以将ValueLatch设置为限时的,将getValue使用await的限时版实现,那么就可以指定多少时间内搜索结果,搜不到就超时中断。
本人博客已搬家,新地址为:http://yidao620c.github.io/