librosa语音信号处理

  librosa是一个非常强大的python语音信号处理的第三方库,本文参考的是librosa的官方文档,本文主要总结了一些重要,对我来说非常常用的功能。学会librosa后再也不用用python去实现那些复杂的算法了,只需要一句语句就能轻松实现。

先总结一下本文中常用的专业名词:sr:采样率、hop_length:帧移、overlapping:连续帧之间的重叠部分、n_fft:窗口大小、spectrum:频谱、spectrogram:频谱图或叫做语谱图、amplitude:振幅、mono:单声道、stereo:立体声

读取音频

librosa.load(path, sr=22050, mono=True, offset=0.0, duration=None)

读取音频文件。默认采样率是22050,如果要保留音频的原始采样率,使用sr = None

参数

  • path :音频文件的路径。
  • sr 采样率,如果为“None”使用音频自身的采样率
  • mono bool,是否将信号转换为单声道
  • offset float,在此时间之后开始阅读(以秒为单位)
  • 持续时间:float加载这么多的音频(以秒为单位)

返回:

  • 音频时间序列
  • sr 音频的采样率

重采样

librosa.resample(y, orig_sr, target_sr, fix=True, scale=False) 

重新采样从orig_sr到target_sr的时间序列

参数

  • 音频时间序列。可以是单声道或立体声。
  • orig_sr y的原始采样率
  • target_sr 目标采样率
  • fixbool,调整重采样信号的长度,使其大小恰好为 $\frac{len(y)}{orig\_sr}*target\_sr =t*target\_sr$
  • scalebool,缩放重新采样的信号,以使y和y_hat具有大约相等的总能量。

返回

  • y_hat :重采样之后的音频数组

读取时长

librosa.get_duration(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, center=True, filename=None)

计算时间序列的的持续时间(以秒为单位)

参数:

  • 音频时间序列
  • sr y的音频采样率
  • STFT矩阵或任何STFT衍生的矩阵(例如,色谱图或梅尔频谱图)。根据频谱图输入计算的持续时间仅在达到帧分辨率之前才是准确的。如果需要高精度,则最好直接使用音频时间序列。
  • n_fft S的 FFT窗口大小
  • hop_length S列之间的音频样本数
  • center布尔值
    • 如果为True,则S [:, t]的中心为y [t * hop_length]
    • 如果为False,则S [:, t]从y[t * hop_length]开始
  • filename 如果提供,则所有其他参数都将被忽略,并且持续时间是直接从音频文件中计算得出的。

返回:

  • 持续时间(以秒为单位)

读取采样率

librosa.get_samplerate(path)

参数

  • path :音频文件的路径

返回:音频文件的采样率

写音频

librosa.output.write_wav(path, y, sr, norm=False)

将时间序列输出为.wav文件

参数

  • 路径保存输出wav文件的路径
  • 音频时间序列。
  • sr y的采样率
  • normbool,是否启用幅度归一化。将数据缩放到[-1,+1]范围。

过零率

计算音频时间序列的过零率。

librosa.feature.zero_crossing_rate(y, frame_length = 2048, hop_length = 512, center = True) 

参数:

  • 音频时间序列
  • frame_length 帧长
  • hop_length :帧移
  • center:bool,如果为True,则通过填充y的边缘来使帧居中。

返回:

  • zcr:zcr[0,i]是第i帧中的过零率
y, sr = librosa.load(librosa.util.example_audio_file())
print(librosa.feature.zero_crossing_rate(y))
# array([[ 0.134,  0.139, ...,  0.387,  0.322]])

波形图

librosa.display.waveplot(y, sr=22050, x_axis='time', offset=0.0, ax=None)

绘制波形的幅度包络线

参数

  • 音频时间序列
  • sr :y的采样率
  • x_axis str {'time','off','none'}或None,如果为“时间”,则在x轴上给定时间刻度线。
  • offset水平偏移(以秒为单位)开始波形图
import librosa.display
import matplotlib.pyplot as plt

y, sr = librosa.load(librosa.util.example_audio_file(), duration=10)
librosa.display.waveplot(y, sr=sr)
plt.show()

librosa语音信号处理_第1张图片

短时傅里叶变换

librosa.stft(y, n_fft=2048, hop_length=None, win_length=None, window='hann', center=True, pad_mode='reflect')

短时傅立叶变换(STFT),返回一个复数矩阵使得D(f,t)

  • 复数的实部:np.abs(D(f,t))频率的振幅
  • 复数的虚部:np.angle(D(f,t))频率的相位

参数:

  • y:音频时间序列
  • n_fftFFT窗口大小,n_fft=hop_length+overlapping
  • hop_length帧移,如果未指定,则默认win_length / 4。
  • win_length每一帧音频都由window()加窗。窗长win_length,然后用零填充以匹配N_FFT。默认win_length=n_fft
  • window:字符串,元组,数字,函数 shape =(n_fft, )
    • 窗口(字符串,元组或数字);
    • 窗函数,例如scipy.signal.hanning
    • 长度为n_fft的向量或数组
  • center:bool
    • 如果为True,则填充信号y,以使帧 D [:, t]以y [t * hop_length]为中心。
    • 如果为False,则D [:, t]从y [t * hop_length]开始
  • dtypeD的复数值类型。默认值为64-bit complex复数
  • pad_mode如果center = True,则在信号的边缘使用填充模式。默认情况下,STFT使用reflection padding。

返回:

  • STFT矩阵,shape =(1 + $\frac{n_{fft} }{2}$,t)

短时傅里叶逆变换

librosa.istft(stft_matrix, hop_length=None, win_length=None, window='hann', center=True, length=None)

短时傅立叶逆变换(ISTFT),将复数值D(f,t)频谱矩阵转换为时间序列y,窗函数、帧移等参数应与stft相同

参数

  • stft_matrix :经过STFT之后的矩阵
  • hop_length :帧移,默认为$\frac{win_{length}}{4}$
  • win_length :窗长,默认为n_fft
  • window:字符串,元组,数字,函数或shape = (n_fft, )
    • 窗口(字符串,元组或数字)
    • 窗函数,例如scipy.signal.hanning
    • 长度为n_fft的向量或数组
  • center:bool
    • 如果为True,则假定D具有居中的帧
    • 如果False,则假定D具有左对齐的帧
  • length:如果提供,则输出y为零填充或剪裁为精确长度音频

返回

  • 时域信号

幅度转dB

librosa.amplitude_to_db(S, ref=1.0)

将幅度频谱转换为dB标度频谱。也就是对S取对数与这个函数相反的是librosa.db_to_amplitude(S)

参数

  • 输入幅度
  • ref :参考值,振幅abs(S)相对于ref进行缩放,$20*log_{10}(\frac{S}{ref})$

返回

  • dB为单位的S

功率转dB

librosa.core.power_to_db(S, ref=1.0)

将功率谱(幅度平方)转换为分贝(dB)单位,与这个函数相反的是librosa.db_to_power(S)

参数

  • S输入功率
  • ref :参考值,振幅abs(S)相对于ref进行缩放,$10*log_{10}(\frac{S}{ref})$

返回

  • dB为单位的S
import librosa.display
import numpy as np
import matplotlib.pyplot as plt

y, sr = librosa.load(librosa.util.example_audio_file())
S = np.abs(librosa.stft(y))
print(librosa.power_to_db(S ** 2))
# array([[-33.293, -27.32 , ..., -33.293, -33.293],
#        [-33.293, -25.723, ..., -33.293, -33.293],
#        ...,
#        [-33.293, -33.293, ..., -33.293, -33.293],
#        [-33.293, -33.293, ..., -33.293, -33.293]], dtype=float32)

plt.figure()
plt.subplot(2, 1, 1)
librosa.display.specshow(S ** 2, sr=sr, y_axis='log')  # 从波形获取功率谱图
plt.colorbar()
plt.title('Power spectrogram')
plt.subplot(2, 1, 2)
# 相对于峰值功率计算dB, 那么其他的dB都是负的,注意看后边cmp值
librosa.display.specshow(librosa.power_to_db(S ** 2, ref=np.max),
                         sr=sr, y_axis='log', x_axis='time')
plt.colorbar(format='%+2.0f dB')
plt.title('Log-Power spectrogram')
plt.set_cmap("autumn")
plt.tight_layout()
plt.show()

librosa语音信号处理_第2张图片

功率谱和dB功率谱

频谱图

librosa.display.specshow(data,  x_axis=None, y_axis=None, sr=22050, hop_length=512)

参数:

  • data:要显示的矩阵
  • sr 采样率
  • hop_length :帧移
  • x_axis 、y_axis x和y轴的范围
  • 频率类型
    • 'linear','fft','hz':频率范围由FFT窗口和采样率确定
    • 'log':频谱以对数刻度显示
    • 'mel':频率由mel标度决定
  • 时间类型
    • time:标记以毫秒,秒,分钟或小时显示。值以秒为单位绘制。
    • s:标记显示为秒。
    • ms:标记以毫秒为单位显示。
  • 所有频率类型均以Hz为单位绘制
import librosa.display
import numpy as np
import matplotlib.pyplot as plt

y, sr = librosa.load(librosa.util.example_audio_file())
plt.figure()

D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
plt.subplot(2, 1, 1)
librosa.display.specshow(D, y_axis='linear')
plt.colorbar(format='%+2.0f dB')
plt.title('线性频率功率谱')

plt.subplot(2, 1, 2)
librosa.display.specshow(D, y_axis='log')
plt.colorbar(format='%+2.0f dB')
plt.title('对数频率功率谱')
plt.show()

librosa语音信号处理_第3张图片

Mel滤波器组

librosa.filters.mel(sr, n_fft, n_mels=128, fmin=0.0, fmax=None, htk=False, norm=1)

创建一个滤波器组矩阵以将FFT合并成Mel频率

参数:

  • sr 输入信号的采样率
  • n_fft FFT组件数
  • n_mels 产生的梅尔带数
  • fmin 最低频率(Hz)
  • fmax最高频率(以Hz为单位)。如果为None,则使用fmax = sr / 2.0
  • norm{None,1,np.inf} [标量]
    • 如果为1,则将三角mel权重除以mel带的宽度(区域归一化)。否则,保留所有三角形的峰值为1.0

返回:Mel变换矩阵

melfb = librosa.filters.mel(22050, 2048)
# array([[ 0.   ,  0.016, ...,  0.   ,  0.   ],
#        [ 0.   ,  0.   , ...,  0.   ,  0.   ],
#        ...,
#        [ 0.   ,  0.   , ...,  0.   ,  0.   ],
#        [ 0.   ,  0.   , ...,  0.   ,  0.   ]])
import matplotlib.pyplot as plt
plt.figure()
librosa.display.specshow(melfb, x_axis='linear')
plt.ylabel('Mel filter')
plt.title('Mel filter bank')
plt.colorbar()
plt.tight_layout()
plt.show()

librosa语音信号处理_第4张图片

计算Mel scaled 频谱

librosa.feature.melspectrogram(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann',
center=True, pad_mode='reflect', power=2.0)

计算Mel scaled 频谱,

如果提供了频谱图输入S,则通过mel_f.dot(S)将其直接映射到mel_f上。

如果提供了时间序列输入y,sr,则首先计算其幅值频谱S,然后通过mel_f.dot(S ** power)将其映射到mel scale上 。默认情况下,power= 2在功率谱上运行。

参数

  • 音频时间序列
  • sr 采样率
  • 频谱
  • n_fft FFT窗口的长度
  • hop_length :帧移
  • win_length 口的长度为win_length,默认win_length = n_fft
  • window 字符串,元组,数字,函数或shape =(n_fft, )
    • 窗口规范(字符串,元组或数字);看到scipy.signal.get_window
    • 窗口函数,例如 scipy.signal.hanning
    • 度为n_fft的向量或数组
  • centerbool
    • 如果为True,则填充信号y,以使帧 t以y [t * hop_length]为中心。
    • 如果为False,则帧t从y [t * hop_length]开始
  • power幅度谱的指数。例如1代表能量,2代表功率,等等
  • n_mels:滤波器组的个数 1288
  • fmax:最高频率

返回:Mel频谱shape=(n_mels, t)

import librosa.display
import numpy as np
import matplotlib.pyplot as plt

y, sr = librosa.load(librosa.util.example_audio_file())
# 方法一:使用时间序列求Mel频谱
print(librosa.feature.melspectrogram(y=y, sr=sr))
# array([[  2.891e-07,   2.548e-03, ...,   8.116e-09,   5.633e-09],
#        [  1.986e-07,   1.162e-02, ...,   9.332e-08,   6.716e-09],
#        ...,
#        [  3.668e-09,   2.029e-08, ...,   3.208e-09,   2.864e-09],
#        [  2.561e-10,   2.096e-09, ...,   7.543e-10,   6.101e-10]])

# 方法二:使用stft频谱求Mel频谱
D = np.abs(librosa.stft(y)) ** 2  # stft频谱
S = librosa.feature.melspectrogram(S=D)  # 使用stft频谱求Mel频谱

plt.figure(figsize=(10, 4))
librosa.display.specshow(librosa.power_to_db(S, ref=np.max),
                         y_axis='mel', fmax=8000, x_axis='time')
plt.colorbar(format='%+2.0f dB')
plt.title('Mel spectrogram')
plt.tight_layout()
plt.show()

librosa语音信号处理_第5张图片

提取Log-Mel Spectrogram 特征

  Log-Mel Spectrogram特征是目前在语音识别和环境声音识别中很常用的一个特征,由于CNN在处理图像上展现了强大的能力,使得音频信号的频谱图特征的使用愈加广泛,甚至比MFCC使用的更多。在librosa中,Log-Mel Spectrogram特征的提取只需几行代码:

import librosa

y, sr = librosa.load('./train_nb.wav', sr=16000)
# 提取 mel spectrogram feature
melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128)
logmelspec = librosa.amplitude_to_db(melspec)        # 转换到对数刻度

print(logmelspec.shape)        # (128, 65)

  可见,Log-Mel Spectrogram特征是二维数组的形式,128表示Mel频率的维度(频域),64为时间帧长度(时域),所以Log-Mel Spectrogram特征是音频信号的时频表示特征。其中,n_fft指的是窗的大小,这里为1024;hop_length表示相邻窗之间的距离,这里为512,也就是相邻窗之间有50%的overlap;n_mels为mel bands的数量,这里设为128。

提取MFCC系数

  MFCC特征是一种在自动语音识别和说话人识别中广泛使用的特征。关于MFCC特征的详细信息,有兴趣的可以参考博客http:// blog.csdn.net/zzc15806/article/details/79246716。在librosa中,提取MFCC特征只需要一个函数:

librosa.feature.mfcc(y=None, sr=22050, S=None, n_mfcc=20, dct_type=2, norm='ortho', **kwargs)

参数:

  • y:音频数据
  • sr:采样率
  • S:np.ndarray,对数功能梅尔谱图
  • n_mfcc:int>0,要返回的MFCC数量
  • dct_type:None, or {1, 2, 3}  离散余弦变换(DCT)类型。默认情况下,使用DCT类型2。
  • norm: None or ‘ortho’ 规范。如果dct_type为2或3,则设置norm =’ortho’使用正交DCT基础。 标准化不支持dct_type = 1。

返回:

M: MFCC序列

import librosa

y, sr = librosa.load('./train_nb.wav', sr=16000)
# 提取 MFCC feature
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)

print(mfccs.shape)        # (40, 65)

 

你可能感兴趣的:(librosa语音信号处理)