语音信号端点检测(Voice Activity Detection, VAD)是语音处理中的一个重要步骤,用于确定语音信号的起始和结束点。基于能量检测的方法通过计算语音信号的能量来识别活跃语音段。FPGA 的并行处理能力使其非常适合用于实时的语音信号处理。
实现基于能量检测的语音信号端点检测(VAD)在 FPGA 上的不同应用场景,可以通过调整门限值以及集成其他处理模块,使其适用于多种设备和环境。以下是针对语音识别系统、通信设备、录音设备和智能家居设备的 FPGA Verilog 代码示例。
Verilog 示例代码
module vad_for_speech_recognition #(
parameter DATA_WIDTH = 16,
parameter FRAME_SIZE = 256,
parameter THRESHOLD = 1200 // Tuned threshold for speech recognition
)(
input wire clk,
input wire reset,
input wire signed [DATA_WIDTH-1:0] sample_in,
output reg voice_active
);
reg signed [31:0] energy;
reg [8:0] sample_count;
reg signed [DATA_WIDTH-1:0] frame_buffer[FRAME_SIZE-1:0];
integer i;
always @(posedge clk or posedge reset) begin
if (reset) begin
energy <= 0;
sample_count <= 0;
voice_active <= 0;
for (i = 0; i < FRAME_SIZE; i = i + 1)
frame_buffer[i] <= 0;
end else begin
// Shift buffer and add new sample
for (i = FRAME_SIZE-1; i > 0; i = i - 1) begin
frame_buffer[i] <= frame_buffer[i-1];
end
frame_buffer[0] <= sample_in;
// Increment sample count
sample_count <= sample_count + 1;
// Calculate energy when a full frame is ready
if (sample_count == FRAME_SIZE) begin
sample_count <= 0;
energy <= 0;
for (i = 0; i < FRAME_SIZE; i = i + 1) begin
energy <= energy + frame_buffer[i] * frame_buffer[i];
end
// Compare with threshold
voice_active <= (energy > THRESHOLD);
end
end
end
endmodule
Verilog 示例代码
module vad_for_communication_device #(
parameter DATA_WIDTH = 16,
parameter FRAME_SIZE = 256,
parameter THRESHOLD = 1000 // Adjusted threshold for communication
)(
input wire clk,
input wire reset,
input wire signed [DATA_WIDTH-1:0] sample_in,
output reg voice_active
);
// Logic remains similar to the previous example with adjusted threshold
...
endmodule
Verilog 示例代码
module vad_for_recording_device #(
parameter DATA_WIDTH = 16,
parameter FRAME_SIZE = 256,
parameter THRESHOLD = 1100 // Specific threshold for recording
)(
input wire clk,
input wire reset,
input wire signed [DATA_WIDTH-1:0] sample_in,
output reg voice_active
);
// Similar VAD logic tailored for recording purposes
...
endmodule
Verilog 示例代码
module vad_for_smart_home #(
parameter DATA_WIDTH = 16,
parameter FRAME_SIZE = 256,
parameter THRESHOLD = 1300 // Higher threshold due to noisy environments
)(
input wire clk,
input wire reset,
input wire signed [DATA_WIDTH-1:0] sample_in,
output reg voice_active
);
// Identical structure, adjusted for smart home environments
...
endmodule
基于能量的 VAD 方法通过计算每个帧的能量,并将其与预设的门限值比较,以判断该帧是否包含语音活动。
+--------------------------+
| 输入语音信号 |
+-------------+------------+
|
v
+-------------+------------+
| 划分成固定长度帧 |
+-------------+------------+
|
v
+-------------+------------+
| 计算每帧的能量 |
+-------------+------------+
|
v
+-------------+------------+
| 将能量与门限值比较 |
+-------------+------------+
|
v
+-------------+------------+
| 检测到有效语音信号 |
+--------------------------+
以下是一个简单的 Verilog 示例,用于实现能量检测的基本框架:
module vad_energy_detection #(
parameter DATA_WIDTH = 16,
parameter FRAME_SIZE = 256,
parameter THRESHOLD = 1000
)(
input wire clk,
input wire reset,
input wire signed [DATA_WIDTH-1:0] sample_in,
output reg voice_active
);
reg signed [31:0] energy;
reg [8:0] sample_count;
reg signed [DATA_WIDTH-1:0] frame_buffer[FRAME_SIZE-1:0];
integer i;
always @(posedge clk or posedge reset) begin
if (reset) begin
energy <= 0;
sample_count <= 0;
voice_active <= 0;
for (i = 0; i < FRAME_SIZE; i = i + 1)
frame_buffer[i] <= 0;
end else begin
// Shift the buffer and add new sample
for (i = FRAME_SIZE-1; i > 0; i = i - 1) begin
frame_buffer[i] <= frame_buffer[i-1];
end
frame_buffer[0] <= sample_in;
// Increment sample count
sample_count <= sample_count + 1;
// Check if a full frame is ready
if (sample_count == FRAME_SIZE) begin
sample_count <= 0;
energy <= 0;
// Calculate frame energy
for (i = 0; i < FRAME_SIZE; i = i + 1) begin
energy <= energy + frame_buffer[i] * frame_buffer[i];
end
// Compare with threshold to determine voice activity
if (energy > THRESHOLD) begin
voice_active <= 1;
end else begin
voice_active <= 0;
end
end
end
end
endmodule
基于能量检测的语音信号端点检测可以有效地从背景噪声中提取语音信号,从而提高各种语音处理应用的性能。在 FPGA 上实现这种算法,可以利用其低延迟和高并行处理能力,实现实时语音活动检测。
随着机器学习技术的发展,未来的语音活动检测可能会结合深度学习模型,实现更精确的检测和分类。同时,FPGA 的动态可重配置功能将进一步增强其在多变应用中的灵活性和适应性。此外,将 AI 技术与传统数字信号处理相结合,将为语音处理和感知领域带来更多创新机会。