Queue模块是提供队列操作的模块,队列是线程间最常用的交换数据的形式。该模块提供了三种队列:
Queue.Queue(maxsize):先进先出,maxsize是队列的大小,其值为非正数时为无线循环队列
Queue.LifoQueue(maxsize):后进先出,相当于栈
Queue.PriorityQueue(maxsize):优先级队列。
其中LifoQueue,PriorityQueue是Queue的子类。三者拥有以下共同的方法:
qsize():返回近似的队列大小。为什么要加“近似”二字呢?因为当该值大于0的时候并不保证并发执行的时候get()方法不被阻塞,同样,对于put()方法有效。
empty():返回布尔值,队列为空时,返回True,反之返回False。
full():当设定了队列大小的时候,如果队列满了,则返回True,否则返回False。
put(item[,block[,timeout]]):向队列里添加元素item,block设置为False的时候,如果队列满了则抛出Full异常。如果block设置为True,timeout设置为None时,则会一种等到有空位的时候再添加进队列;否则会根据timeout设定的超时值抛出Full异常。
put_nowwait(item):等价与put(item,False)。block设置为False的时候,如果队列为空,则抛出Empty异常。如果block设置为True,timeout设置为None时,则会一种等到有空位的时候再添加进队列;否则会根据timeout设定的超时值抛出Empty异常。
get([block[,timeout]]):从队列中删除元素并返回该元素的值,如果timeout是一个正数,它会阻塞最多超时秒数,并且如果在该时间内没有可用的项目,则引发Empty异常。
get_nowwait():等价于get(False)
task_done():发送信号表明入列任务已完成,经常在消费者线程中用到。
join():阻塞直至队列所有元素处理完毕,然后再处理其它操作。
(一)源码分析
Queue模块用起来很简单很简单,但我觉得有必要把该模块的相关源代码贴出来分析下,会学到不少东西,看看大神们写的代码多么美观,多么结构化模块化,再想想自己写的代码,都是泪呀,来学习学习。为了缩减篇幅,源码的注释部分被删减掉。
from time import time as _time try: import threading as _threading except ImportError: import dummy_threading as _threading from collections import deque import heapq __all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue'] class Empty(Exception): "Exception raised by Queue.get(block=0)/get_nowait()." pass class Full(Exception): "Exception raised by Queue.put(block=0)/put_nowait()." pass class Queue: def __init__(self, maxsize=0): self.maxsize = maxsize self._init(maxsize) self.mutex = _threading.Lock() self.not_empty = _threading.Condition(self.mutex) self.not_full = _threading.Condition(self.mutex) self.all_tasks_done = _threading.Condition(self.mutex) self.unfinished_tasks = def get_nowait(self): return self.get(False) def _init(self, maxsize): self.queue = deque() def _qsize(self, len=len): return len(self.queue) def _put(self, item): self.queue.append(item) def _get(self): return self.queue.popleft()
通过后面的几个函数分析知道,Queue对象是在collections模块的queue基础上(关于collections模块参考 Python:使用Counter进行计数统计及collections模块),加上threading模块互斥锁和条件变量封装的。
deque是一个双端队列,很适用于队列和栈。上面的Queue对象就是一个先进先出的队列,所以首先_init()函数定义了一个双端队列,然后它的定义了_put()和_get()函数,它们分别是从双端队列右边添加元素、左边删除元素,这就构成了一个先进先出队列,同理很容易想到LifoQueue(后进先出队列)的实现了,保证队列右边添加右边删除就可以。可以贴出源代码看看。
class LifoQueue(Queue): '''Variant of Queue that retrieves most recently added entries first.''' def _init(self, maxsize): self.queue = [] def _qsize(self, len=len): return len(self.queue) def _put(self, item): self.queue.append(item) def _get(self): return self.queue.pop()
虽然它的"queue"没有用queue(),用列表也是一样的,因为列表append()和pop()操作是在最右边添加元素和删除最右边元素。
再来看看PriorityQueue,他是个优先级队列,这里用到了heapq模块的heappush()和heappop()两个函数。heapq模块对堆这种数据结构进行了模块化,可以建立这种数据结构,同时heapq模块也提供了相应的方法来对堆做操作。其中_init()函数里self.queue=[]可以看作是建立了一个空堆。heappush() 往堆中插入一条新的值 ,heappop() 从堆中弹出最小值 ,这就可以实现优先级(关于heapq模块这里这是简单的介绍)。源代码如下:
class PriorityQueue(Queue): '''Variant of Queue that retrieves open entries in priority order (lowest first). Entries are typically tuples of the form: (priority number, data). ''' def _init(self, maxsize): self.queue = [] def _qsize(self, len=len): return len(self.queue) def _put(self, item, heappush=heapq.heappush): heappush(self.queue, item) def _get(self, heappop=heapq.heappop): return heappop(self.queue)
基本的数据结构分析完了,接着分析其它的部分。
mutex 是个threading.Lock()对象,是互斥锁;not_empty、 not_full 、all_tasks_done这三个都是threading.Condition()对象,条件变量,而且维护的是同一把锁对象mutex(关于threading模块中Lock对象和Condition对象可参考上篇博文Python:线程、进程与协程(2)——threading模块)。
其中:
self.mutex互斥锁:任何获取队列的状态(empty(),qsize()等),或者修改队列的内容的操作(get,put等)都必须持有该互斥锁。acquire()获取锁,release()释放锁。同时该互斥锁被三个条件变量共同维护。
self.not_empty条件变量:线程添加数据到队列中后,会调用self.not_empty.notify()通知其它线程,然后唤醒一个移除元素的线程。
self.not_full条件变量:当一个元素被移除出队列时,会唤醒一个添加元素的线程。
self.all_tasks_done条件变量 :在未完成任务的数量被删除至0时,通知所有任务完成
self.unfinished_tasks : 定义未完成任务数量
再来看看主要方法:
(1)put()
源代码如下:
def put(self, item, block=True, timeout=None): self.not_full.acquire() #not_full获得锁 try: if self.maxsize > 0: #如果队列长度有限制 if not block: #如果没阻塞 if self._qsize() == self.maxsize: #如果队列满了抛异常 raise Full elif timeout is None: #有阻塞且超时为空,等待 while self._qsize() == self.maxsize: self.not_full.wait() elif timeout < 0: raise ValueError("'timeout' must be a non-negative number") else: #如果有阻塞,且超时非负时,结束时间=当前时间+超时时间 endtime = _time() + timeout while self._qsize() == self.maxsize: remaining = endtime - _time() if remaining <= 0.0: #到时后,抛异常 raise Full #如果没到时,队列是满的就会一直被挂起,直到有“位置”腾出 self.not_full.wait(remaining) self._put(item) #调用_put方法,添加元素 self.unfinished_tasks += 1 #未完成任务+1 self.not_empty.notify() #通知非空,唤醒非空挂起的任务 finally: self.not_full.release() #not_full释放锁
默认情况下block为True,timeout为None。如果队列满则会等待,未满则会调用_put方法将进程加入deque中(后面介绍),并且未完成任务加1还会通知队列非空。
如果设置block参数为Flase,队列满时则会抛异常。如果设置了超时那么在时间到之前进行阻塞,时间一到抛异常。这个方法使用not_full对象进行操作。
(2)get()
源码如下:
def get(self, block=True, timeout=None): self.not_empty.acquire() #not_empty获得锁 try: if not block: #不阻塞时 if not self._qsize(): #队列为空时抛异常 raise Empty elif timeout is None: #不限时时,队列为空则会等待 while not self._qsize(): self.not_empty.wait() elif timeout < 0: raise ValueError("'timeout' must be a non-negative number") else: endtime = _time() + timeout while not self._qsize(): remaining = endtime - _time() if remaining <= 0.0: raise Empty self.not_empty.wait(remaining) item = self._get() #调用_get方法,移除并获得项目 self.not_full.notify() #通知非满 return item #返回项目 finally: self.not_empty.release() #释放锁
逻辑跟put()函数一样,参数默认情况下队列空了则会等待,否则将会调用_get方法(往下看)移除并获得一个项,最后返回这个项。这个方法使用not_empty对象进行操作。
不过我觉得put()与get()两个函数结合起来理解比较好。not_full与not_empty代表的是两种不同操作类型的线程,not_full可以理解成is-not-full,即队列是否满了,默认是没有满,没有满时not_full这个条件变量才能获取锁,并做一些条件判断,只有符合条件才能向队列里加元素,添加成功后就会通知not_empty条件变量队列里不是空的,“我”刚刚添加进了一个元素,满足可以执行删除动作的基本条件了(队列不是空的,想想如果是空的执行删除动作就没有意义了),同时唤醒一些被挂起的执行移除动作的线程,让这些线程重新判断条件,如果条件准许就会执行删除动作,然后又通知not_full条件变量,告诉“它”队列不是满的,因为“我”刚才删除了一个元素(想想如果队列满了添加元素就添加不进呀,就没意义了),满足了添加元素的基本条件(队列不是满的),同时唤醒一些被挂起的执行添加动作的线程,这些线程又会进行条件判断,符合条件就会添加元素,否则继续挂起,依次类推,同时这样也保证了线程的安全。正与前面所说,当一个元素被移除出队列时,会唤醒一个添加元素的线程;当添加一个元素时会唤醒一个删除元素的线程。
这是我想了一段时间得出的一种我个人理解的解释,不知道对不对或者说合不合理,如果有大神对这部分知识很熟悉了解,欢迎留言批评指正。
(3)task_done()
源码如下:
def task_done(self): self.all_tasks_done.acquire() #获得锁 try: unfinished = self.unfinished_tasks - 1 #判断队列中一个线程的任务是否全部完成 if unfinished <= 0: #是则进行通知,或在过量调用时报异常 if unfinished < 0: raise ValueError('task_done() called too many times') self.all_tasks_done.notify_all() self.unfinished_tasks = unfinished #否则未完成任务数量-1 finally: self.all_tasks_done.release() #最后释放锁
这个方法判断队列中一个线程的任务是否全部完成,首先会通过all_tasks_done对象获得锁,如果是则进行通知,最后释放锁。
(4)join()
源码如下:
def join(self): self.all_tasks_done.acquire() try: while self.unfinished_tasks: #如果有未完成的任务,将调用wait()方法等待 self.all_tasks_done.wait() finally: self.all_tasks_done.release()
阻塞方法,当队列中有未完成进程时,调用join方法来阻塞,直到他们都完成。
其它的方法都比较简单,也比较好理解,有兴趣可以去看看Queue.py里的源码,要注意的是任何获取队列的状态(empty(),qsize()等),或者修改队列的内容的操作(get,put等)都必须持有互斥锁mutex。
(二)简单例子
(1)一个简单例子
实现一个线程不断生成一个随机数到一个队列中
实现一个线程从上面的队列里面不断的取出奇数
实现另外一个线程从上面的队列里面不断取出偶数
import random,threading,time from Queue import Queue is_product = True class Producer(threading.Thread): """生产数据""" def __init__(self, t_name, queue): threading.Thread.__init__(self,name=t_name) self.data=queue def run(self): while 1: if self.data.full(): global is_product is_product = False else: if self.data.qsize() <= 7:#队列长度小于等于7时添加元素 is_product = True for i in range(2): #每次向队列里添加两个元素 randomnum=random.randint(1,99) print "%s: %s is producing %d to the queue!" % (time.ctime(), self.getName(), randomnum) self.data.put(randomnum,False) #将数据依次存入队列 time.sleep(1) print "deque length is %s"%self.data.qsize() else: if is_product: for i in range(2): # randomnum = random.randint(1, 99) print "%s: %s is producing %d to the queue!" % (time.ctime(), self.getName(), randomnum) self.data.put(randomnum,False) # 将数据依次存入队列 time.sleep(1) print "deque length is %s" % self.data.qsize() else: pass print "%s: %s finished!" %(time.ctime(), self.getName()) #Consumer thread class Consumer_even(threading.Thread): def __init__(self,t_name,queue): threading.Thread.__init__(self,name=t_name) self.data=queue def run(self): while 1: if self.data.qsize() > 7:#队列长度大于7时开始取元素 val_even = self.data.get(False) if val_even%2==0: print "%s: %s is consuming. %d in the queue is consumed!" % (time.ctime(),self.getName(),val_even) time.sleep(2) else: self.data.put(val_even) time.sleep(2) print "deque length is %s" % self.data.qsize() else: pass class Consumer_odd(threading.Thread): def __init__(self,t_name,queue): threading.Thread.__init__(self, name=t_name) self.data=queue def run(self): while 1: if self.data.qsize() > 7: val_odd = self.data.get(False) if val_odd%2!=0: print "%s: %s is consuming. %d in the queue is consumed!" % (time.ctime(), self.getName(), val_odd) time.sleep(2) else: self.data.put(val_odd) time.sleep(2) print "deque length is %s" % self.data.qsize() else: pass #Main thread def main(): queue = Queue(20) producer = Producer('Pro.', queue) consumer_even = Consumer_even('Con_even.', queue) consumer_odd = Consumer_odd('Con_odd.',queue) producer.start() consumer_even.start() consumer_odd.start() producer.join() consumer_even.join() consumer_odd.join() if __name__ == '__main__': main()
这个例子跟上篇博文Python:线程、进程与协程(2)——threading模块中介绍Condition的例子很像,就是构造了一个长度为20的队列,当队列1元素个数小于8时就忘队列中添加元素,当队列满后,就不再添加,当队列元素大于7个时,才会取元素,否则不取元素。有兴趣的可以动手试试,仔细体会下。
(2)线程池
在使用多线程处理任务时也不是线程越多越好,由于在切换线程的时候,需要切换上下文环境,依然会造成cpu的大量开销。为解决这个问题,线程池的概念被提出来了。预先创建好一个较为优化的数量的线程,让过来的任务立刻能够使用,就形成了线程池。在python中,没有内置的较好的线程池模块,需要自己实现或使用第三方模块。
#coding=utf-8 import queue import threading import contextlib import time StopEvent = object() # 创建空对象 class ThreadPool(object): def __init__(self, max_num, max_task_num = None): if max_task_num: self.q = queue.Queue(max_task_num) else: self.q = queue.Queue() self.max_num = max_num self.cancel = False self.terminal = False self.generate_list = [] self.free_list = [] def run(self, func, args, callback=None): """ 线程池执行一个任务 :param func: 任务函数 :param args: 任务函数所需参数 :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数) :return: 如果线程池已经终止,则返回True否则None """ if self.cancel: return if len(self.free_list) == 0 and len(self.generate_list) < self.max_num: self.generate_thread() w = (func, args, callback,) self.q.put(w) def generate_thread(self): """ 创建一个线程 """ t = threading.Thread(target=self.call) t.start() def call(self): """ 循环去获取任务函数并执行任务函数 """ current_thread = threading.currentThread self.generate_list.append(current_thread) event = self.q.get() while event != StopEvent: func, arguments, callback = event try: result = func(*arguments) success = True except Exception as e: success = False result = None if callback is not None: try: callback(success, result) except Exception as e: pass with self.worker_state(self.free_list, current_thread): if self.terminal: event = StopEvent else: event = self.q.get() else: self.generate_list.remove(current_thread) def close(self): """ 执行完所有的任务后,所有线程停止 """ self.cancel = True full_size = len(self.generate_list) while full_size: self.q.put(StopEvent) full_size -= 1 def terminate(self): """ 无论是否还有任务,终止线程 """ self.terminal = True while self.generate_list: self.q.put(StopEvent) self.q.empty() @contextlib.contextmanager def worker_state(self, state_list, worker_thread): """ 用于记录线程中正在等待的线程数 """ state_list.append(worker_thread) try: yield finally: state_list.remove(worker_thread) # How to use pool = ThreadPool(5) def callback(status, result): # status, execute action status # result, execute action return value pass def action(i): print(i) for i in range(30): ret = pool.run(action, (i,), callback) time.sleep(5) print(len(pool.generate_list), len(pool.free_list)) print(len(pool.generate_list), len(pool.free_list)) # pool.close() # pool.terminate()