2019-ACM-ICPC-南京区网络赛-E. K Sum-杜教筛+欧拉定理

2019-ACM-ICPC-南京区网络赛-E. K Sum-杜教筛+欧拉定理

2019-ACM-ICPC-南京区网络赛-E. K Sum-杜教筛+欧拉定理_第1张图片


【Problem Description】

\(f_n(k)=\sum_{l_1=1}^n\sum_{l_2=1}^n\dots\sum_{l_k=1}^n gcd(l_1,l_2,\dots,l_k)\)。求\(\sum_{i=2}^kf_n(i)\ mod \ (10^9+7)\)

【Solution】

对于\(f_n(k)\)有:
\[ \sum_{l_1=1}^n\sum_{l_2=1}^n\dots\sum_{l_k=1}^ngcd(l_1,l_2,\dots,l_k)=\sum_{d=1}^n\sum_{l_1=1}^{\frac{n}{d}}\sum_{l_2=1}^{\frac{n}{d}}\dots\sum_{l_k=1}^{\frac{n}{d}}[gcd(l_1,l_2,\dots,l_k)=1]\cdot d^2 \\=\sum_{d=1}^nd^2\sum_{t=1}^{n}\mu(t)\sum_{l_1=1}^{\frac{n}{dt}}\sum_{l_2=1}^{\frac{n}{dt}}\dots\sum_{l_k=1}^{\frac{n}{dt}}=\sum_{d=1}^nd^2\sum_{t=1}^n\mu(t)\lfloor\frac{n}{dt}\rfloor^k \]
\(T=dt\)得:
\[ f_n(k)=\sum_{T=1}^{n}\sum_{t|T}\mu(t)\cdot\frac{T^2}{t^2}\cdot \lfloor\frac{n}{T}\rfloor^k \]
\(\sum_{i=2}^kf_n(i)\)为:
\[ \sum_{i=2}^kf_n(i)=\sum_{i=2}^k\sum_{T=1}^n\sum_{t|T}\mu(t)\cdot \frac{T^2}{t^2}\cdot \lfloor\frac{n}{T}\rfloor^k=\sum_{T=1}^n\sum_{t|T}\mu(t)\frac{T^2}{t^2}\sum_{i=2}^k\lfloor\frac{n}{T}\rfloor^k \\=\sum_{T=1}^n\sum_{t|T}\mu(t)\frac{T^2}{t^2}\Big(\frac{\lfloor\frac{n}{T}\rfloor^{k+1}-1}{\lfloor\frac{n}{T}\rfloor-1}-\lfloor\frac{n}{T}\rfloor-1\Big) \]
因为\(k\le 10^{10^5}\),所以用欧拉定理降幂取模即可。注意特判\(\lfloor \frac{n}{T}\rfloor=1\)的情况。
其中令\(g(T)=\sum_{t|T}\mu(t)\cdot \frac{T^2}{t^2},\Phi(n)=\sum_{T=1}^ng(T)\)。对于\(T\)小的部分可以通过线性筛求得:

  1. \(T\)为素数时,\(g(T)=T^2-1\)
  2. \(T\)中无平方质因子时\(T=p_1\cdot p_2\dots p_k\),因为\(g(T)\)为积形函数,则有\(g(T)=g(p_1)\cdot g(p_2)\dots g(p_k)\)
  3. \(T\)中有平方质因子时,有\(g(T\cdot p)=g(T)\cdot p^2\)
    对于\(T\)大的部分,我们发现\(g(T)=\mu*id^2(T)\),则\(g*I(T)=\mu*I*id^2(T)=e*id^2(T)=id^2(T)=T^2\)
    则有:
    \[ \sum_{T=1}^nT^2=\sum_{T=1}^n\sum_{d|T}g(d)=\sum_{T=1}^n\sum_{d|T}\sum_{t|d}\mu(t)\cdot \frac{d^2}{t^2}=\sum_{T=1}^n\sum_{d=1}^{\frac{n}{T}}\sum_{t|d}\mu(t)\cdot\frac{d^2}{t^2} \\=\sum_{T=1}^n\Phi(\frac{n}{T}),则\Phi(n)=\frac{n\cdot (n+1)\cdot (2\cdot n+1)}{6}-\sum_{T=2}^n\Phi(\frac{n}{T}) \]

【Code】

/*
 * @Author: Simon 
 * @Date: 2019-09-04 15:07:56 
 * @Last Modified by: Simon
 * @Last Modified time: 2019-09-04 16:22:26
 */
#include
using namespace std;
#define INF 0x3f3f3f3f
#define maxn 1000005
typedef long long ll;
const int mod=1e9+7;
const int Mod=3e6;
int prime[maxn],cnt=0,inv6;
ll phi[maxn],sum[maxn];
bool vis[maxn]={1,1};
void Euler(){ //线性筛
    phi[1]=1;
    for(int i=2;i>=1;
    }
    return ans;
}
unordered_mapmp;
int cal(int n,int k1,int k2){ //等比数列求和公式
    if(n==1) return (k2-1)%mod; //特判
    int t1=fpow(n,k1+1,mod)-1LL*n*n%mod,t2=n-1;
    return 1LL*t1*fpow(t2,mod-2,mod)%mod;
}
int sum_2(int n){
    n%=mod;
    return 1LL*n%mod*(n+1)%mod*(2*n+1)%mod*inv6%mod;
}
int dfs(int n){ //Phi(n)
    if(n>T;
    while(T--){
        mp.clear();
        int n;string k;cin>>n>>k;
        int t1=0,t2=0;
        for(int i=0;i

你可能感兴趣的:(2019-ACM-ICPC-南京区网络赛-E. K Sum-杜教筛+欧拉定理)