2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划

2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划

2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划_第1张图片


【Problem Description】

​ 有向无环图中,有个机器人从\(1\)号节点出发,每天等概率的走到下一个节点或者停在当前节点,并且第\(i\)天消耗\(i\)的耐久度。求它到达\(n\)号节点时期望消耗的耐久度是多少?

题目保证只有一个入度为\(0\)的节点,只有一个出度为\(0\)的节点。

【Solution】

​ 概率\(dp\)

​ 假设每天消耗\(1\)点耐久度。定义\(dp[u]\)表示从\(u\)节点走到\(n\)节点的期望消耗的耐久度。定义\(v\)\(u\)的后继节点。\(du[u]\)表示\(u\)节点的出度。则有:
\[ dp[u]=\frac{\sum(dp[v]+1)}{du[u]+1}+\frac{dp[u]+1}{du[u]+1} \]
表示\(u\)\(n\)的期望消耗的耐久度为从\(u\)开始不停留走到\(n\)的期望消耗的耐久度+从\(u\)开始停留一天再走到\(n\)所消耗的耐久度。此时求出来的可以等价为第\(i\)天期望消耗的耐久度。

再用同样的公式求得答案即可:
\[ ans[u]=\frac{\sum(ans[v]+dp[v]+1)}{du[u]+1}+\frac{ans[u]+dp[u]+1}{du[u]+1} \]


【Code】

/*
 * @Author: Simon 
 * @Date: 2019-09-05 20:22:25 
 * @Last Modified by: Simon
 * @Last Modified time: 2019-09-05 21:26:57
 */
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 100005
vectorg[maxn];
bool vis[maxn];
double dp[maxn],dp1[maxn];
void dfs(int u,int n){
    if (vis[u]) return; //判断不能放在for循环中,否则就缺少一层回溯
    if(u==n) return; 
    vis[u] = 1;
    int du=0;
    for(auto v:g[u]){
        dfs(v,n);
        dp[u]+=dp[v]+1;
        dp1[u]+=dp1[v]+dp[v]+1;
        du++; //统计出度
    }
    dp[u]=(dp[u]+1)/du;
    dp1[u]=(dp1[u]+dp[u]+1)/du;
}
Int main(){
#ifndef ONLINE_JUDGE
    //freopen("input.in","r",stdin);
    //freopen("output.out","w",stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    int T;cin>>T;
    while(T--){
        int n,m;cin>>n>>m;
        memset(dp,0,sizeof(dp));
        memset(dp1,0,sizeof(dp1));
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=m;i++){
            int u,v;cin>>u>>v;
            g[u].push_back(v);
        }
        dfs(1,n);
        cout<

你可能感兴趣的:(2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划)