前言
Objective-C语言的一大特性就是动态的,根据官方文档的描述:在runtime之前,消息和方法并不是绑定在一起的,编译器会把方法调用转换为objc_msgSend(receiver, selector)
,如果方法中带有参数则转换为objc_msgSend(receiver, selector, arg1, arg2, ...)
接下来我们通过源码一窥究竟,在次之前我们先了解几个基本概念
- SEL
在objc.h文件中我们可以看到如下代码:
/// An opaque type that represents a method selector.
typedef struct objc_selector *SEL;
SEL其实就是一个不透明的类型它代表一个方法选择子,在编译期,会根据方法名字生成一个ID。
- IMP
在objc.h文件中我们可以看到IMP:
/// A pointer to the function of a method implementation.
#if !OBJC_OLD_DISPATCH_PROTOTYPES
typedef void (*IMP)(void /* id, SEL, ... */ );
#else
typedef id _Nullable (*IMP)(id _Nonnull, SEL _Nonnull, ...);
#endif
他是一个函数指针,指向方法实现的首地址。
- Method
/// An opaque type that represents a method in a class definition.
typedef struct objc_method *Method;
struct objc_method {
SEL _Nonnull method_name OBJC2_UNAVAILABLE;
char * _Nullable method_types OBJC2_UNAVAILABLE;
IMP _Nonnull method_imp OBJC2_UNAVAILABLE;
} OBJC2_UNAVAILABLE;
它保存了SEL到IMP和方法类型,所以我们可以通过SEL调用对应的IMP
方法调用的流程
objc_msgSend的消息分发分为以下几个步骤:
我们找到objc _msgSend源码,都是汇编,不过注释比较详尽
/********************************************************************
*
* id objc_msgSend(id self, SEL _cmd,...);
* IMP objc_msgLookup(id self, SEL _cmd, ...);
*
* objc_msgLookup ABI:
* IMP returned in r11
* Forwarding returned in Z flag
* r10 reserved for our use but not used
*
********************************************************************/
.data
.align 3
.globl _objc_debug_taggedpointer_classes
_objc_debug_taggedpointer_classes:
.fill 16, 8, 0
.globl _objc_debug_taggedpointer_ext_classes
_objc_debug_taggedpointer_ext_classes:
.fill 256, 8, 0
ENTRY _objc_msgSend
UNWIND _objc_msgSend, NoFrame
MESSENGER_START
NilTest NORMAL
GetIsaFast NORMAL // r10 = self->isa
CacheLookup NORMAL, CALL // calls IMP on success
NilTestReturnZero NORMAL
GetIsaSupport NORMAL
// cache miss: go search the method lists
LCacheMiss:
// isa still in r10
MESSENGER_END_SLOW
jmp __objc_msgSend_uncached
END_ENTRY _objc_msgSend
ENTRY _objc_msgLookup
NilTest NORMAL
GetIsaFast NORMAL // r10 = self->isa
CacheLookup NORMAL, LOOKUP // returns IMP on success
NilTestReturnIMP NORMAL
GetIsaSupport NORMAL
// cache miss: go search the method lists
LCacheMiss:
// isa still in r10
jmp __objc_msgLookup_uncached
END_ENTRY _objc_msgLookup
ENTRY _objc_msgSend_fixup
int3
END_ENTRY _objc_msgSend_fixup
STATIC_ENTRY _objc_msgSend_fixedup
// Load _cmd from the message_ref
movq 8(%a2), %a2
jmp _objc_msgSend
END_ENTRY _objc_msgSend_fixedup
就此我们大概可以了解到其调用流程:
判断receiver是否为nil,也就是objc_msgSend的第一个参数self,也就是要调用的那个方法所属对象
从缓存里寻找,找到了则分发,否则
-
利用objc-class.mm中_ class _lookupMethodAndLoadCache3方法去寻找selector
- 如果支持GC,忽略掉非GC环境的方法(retain等)
- 从本class的method list寻找selector,如果找到,填充到缓存中,并返回selector,否则
- 寻找父类的method list,并依次往上寻找,直到找到selector,填充到缓存中,并返回selector,否则
- 调用_class_resolveMethod,如果可以动态resolve为一个selector,不缓存,方法返回,否则
- 转发这个selector,否则
- 报错,抛出异常
这里的_ class _lookupMethodAndLoadCache3其实就是对lookUpImpOrForward方法的调用:
/***********************************************************************
* _class_lookupMethodAndLoadCache.
* Method lookup for dispatchers ONLY. OTHER CODE SHOULD USE lookUpImp().
* This lookup avoids optimistic cache scan because the dispatcher
* already tried that.
**********************************************************************/
IMP _class_lookupMethodAndLoadCache3(id obj, SEL sel, Class cls)
{
return lookUpImpOrForward(cls, sel, obj,
YES/*initialize*/, NO/*cache*/, YES/*resolver*/);
}
对第五个参数cache传值为NO,因为在此之前已经做了一个查找这里CacheLookup NORMAL, CALL,这里是对缓存查找的一个优化。
接下来看一下lookUpImpOrForward的一些关键实现细节
- 缓存查找优化
// Optimistic cache lookup
if (cache)
methodPC = _cache_getImp(cls, sel);
if (methodPC) return methodPC;
}
这里有个判断,是否需要缓存查找,如果cache为NO则进入下一步
- 检查被释放类
// Check for freed class
if (cls == _class_getFreedObjectClass())
return (IMP) _freedHandler;
_class _getFreedObjectClass的实现:
/***********************************************************************
* _class_getFreedObjectClass. Return a pointer to the dummy freed
* object class. Freed objects get their isa pointers replaced with
* a pointer to the freedObjectClass, so that we can catch usages of
* the freed object.
**********************************************************************/
static Class _class_getFreedObjectClass(void)
{
return (Class)freedObjectClass;
}
注释写到,这里返回的被释放对象的指针,不是太理解,备注这以后再看看
- 懒加载+initialize
// Check for +initialize
if (initialize && !cls->isInitialized()) {
_class_initialize (_class_getNonMetaClass(cls, inst));
// If sel == initialize, _class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
在方法调用过程中,如果类没有被初始化的时候,会调用_class_initialize对类进行初始化,关于+initialize可以看之前的Runtime源码 +load 和 +initialize。
- 加锁保证原子性
// The lock is held to make method-lookup + cache-fill atomic
// with respect to method addition. Otherwise, a category could
// be added but ignored indefinitely because the cache was re-filled
// with the old value after the cache flush on behalf of the category.
retry:
methodListLock.lock();
// Try this class's cache.
methodPC = _cache_getImp(cls, sel);
if (methodPC) goto done;
这里又做了一次缓存查找,因为上一步执行了+initialize
加锁这一部分只有一行简单的代码,其主要目的保证方法查找以及缓存填充(cache-fill)的原子性,保证在运行以下代码时不会有新方法添加导致缓存被冲洗(flush)。
- 本类的方法列表查找
// Try this class's method lists.
meth = _class_getMethodNoSuper_nolock(cls, sel);
if (meth) {
log_and_fill_cache(cls, cls, meth, sel);
methodPC = method_getImplementation(meth);
goto done;
}
这里调用了log_ and_ fill_cache这个后面来看,接下里就是
- 父类方法列表查找
// Try superclass caches and method lists.
curClass = cls;
while ((curClass = curClass->superclass)) {
// Superclass cache.
meth = _cache_getMethod(curClass, sel, _objc_msgForward_impcache);
if (meth) {
if (meth != (Method)1) {
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, curClass, meth, sel);
methodPC = method_getImplementation(meth);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
}
// Superclass method list.
meth = _class_getMethodNoSuper_nolock(curClass, sel);
if (meth) {
log_and_fill_cache(cls, curClass, meth, sel);
methodPC = method_getImplementation(meth);
goto done;
}
}
关于消息在列表方法查找的过程,根据官方文档如下:
这里沿着集成体系对父类的方法列表进行查找,找到了就调用log_ and_ fill_cache
log_ and_ fill_cach的实现:
记录:
/***********************************************************************
* log_and_fill_cache
* Log this method call. If the logger permits it, fill the method cache.
* cls is the method whose cache should be filled.
* implementer is the class that owns the implementation in question.
**********************************************************************/
static void
log_and_fill_cache(Class cls, Class implementer, Method meth, SEL sel)
{
#if SUPPORT_MESSAGE_LOGGING
if (objcMsgLogEnabled) {
bool cacheIt = logMessageSend(implementer->isMetaClass(),
cls->nameForLogging(),
implementer->nameForLogging(),
sel);
if (!cacheIt) return;
}
#endif
_cache_fill (cls, meth, sel);
}
内部调用了_cache _fill,填充缓存:
/***********************************************************************
* _cache_fill. Add the specified method to the specified class' cache.
* Returns NO if the cache entry wasn't added: cache was busy,
* class is still being initialized, new entry is a duplicate.
*
* Called only from _class_lookupMethodAndLoadCache and
* class_respondsToMethod and _cache_addForwardEntry.
*
* Cache locks: cacheUpdateLock must not be held.
**********************************************************************/
bool _cache_fill(Class cls, Method smt, SEL sel)
{
uintptr_t newOccupied;
uintptr_t index;
cache_entry **buckets;
cache_entry *entry;
Cache cache;
cacheUpdateLock.assertUnlocked();
// Never cache before +initialize is done
if (!cls->isInitialized()) {
return NO;
}
// Keep tally of cache additions
totalCacheFills += 1;
mutex_locker_t lock(cacheUpdateLock);
entry = (cache_entry *)smt;
cache = cls->cache;
// Make sure the entry wasn't added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
// Don't use _cache_getMethod() because _cache_getMethod() doesn't
// return forward:: entries.
if (_cache_getImp(cls, sel)) {
return NO; // entry is already cached, didn't add new one
}
// Use the cache as-is if it is less than 3/4 full
newOccupied = cache->occupied + 1;
if ((newOccupied * 4) <= (cache->mask + 1) * 3) {
// Cache is less than 3/4 full.
cache->occupied = (unsigned int)newOccupied;
} else {
// Cache is too full. Expand it.
cache = _cache_expand (cls);
// Account for the addition
cache->occupied += 1;
}
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot because the
// minimum size is 4 and we resized at 3/4 full.
buckets = (cache_entry **)cache->buckets;
for (index = CACHE_HASH(sel, cache->mask);
buckets[index] != NULL;
index = (index+1) & cache->mask)
{
// empty
}
buckets[index] = entry;
return YES; // successfully added new cache entry
}
这里还没找到实现则进入下一步,动态方法解析和消息转发,关于消息转发的细节我们下篇再看。
方法缓存
在上面截出的源码中我们多次看到了cache,下面我们就来看看这个,在runtime.h
和objc-runtime-new
cache的定义如下
struct objc_cache {
unsigned int mask /* total = mask + 1 */ OBJC2_UNAVAILABLE;
unsigned int occupied OBJC2_UNAVAILABLE;
Method _Nullable buckets[1] OBJC2_UNAVAILABLE;
};
struct cache_t {
struct bucket_t *_buckets;
mask_t _mask;
mask_t _occupied;
...
}
这就是cache在runtime层面的表示,里面的字段和代表的含义类似
- buckets
数组表示的hash表,每个元素代表一个方法缓存 - mask
当前能达到的最大index(从0开始),,所以缓存的size(total)是mask+1 - occupied
被占用的槽位,因为缓存是以散列表的形式存在的,所以会有空槽,而occupied表示当前被占用的数目
而在_ buckets中包含了一个个的cache_entry和bucket_t(objc2.0的变更):
typedef struct {
SEL name; // same layout as struct old_method
void *unused;
IMP imp; // same layout as struct old_method
} cache_entry;
cache_entry定义也包含了三个字段,分别是:
- name,被缓存的方法名字
- unused,保留字段,还没被使用。
- imp,方法实现
struct bucket_t {
private:
cache_key_t _key;
IMP _imp;
...
}
而bucket_t则没有了老的unused,包含了两个字段:
- key,方法的标志(和之前的name对应)
- imp, 方法的实现
后记
从runtime的源码我们知道了方法调用的流程和方法缓存,有些附带的问题答案也就呼之欲出了:
- 方法缓存在元类的上,由第一节(Runtime源码 类、对象、isa)我们就知道在objc_class的isa指向了他的元类,所以每个类都只有一份方法缓存,而不是每一个类的object都保存一份。
- 在方法调用的父类方法列表查找过程中,如果命中了也会调用
_cache_fill (cls, meth, sel);
,所以即便是从父类取到的方法,也会存在类本身的方法缓存里。而当用一个父类对象去调用那个方法的时候,也会在父类的metaclass里缓存一份。 - 缓存容量限制,在上面的代码中我们注意到这个判断:
// Use the cache as-is if it is less than 3/4 full
mask_t newOccupied = cache->occupied() + 1;
mask_t capacity = cache->capacity();
if (cache->isConstantEmptyCache()) {
// Cache is read-only. Replace it.
cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE);
}
else if (newOccupied <= capacity / 4 * 3) {
// Cache is less than 3/4 full. Use it as-is.
}
else {
// Cache is too full. Expand it.
cache->expand();
}
当cache为空时创建;当新的被占用槽数小于等于其容量的3/4时,直接使用;否则调用cache->expand();
扩充容量:
void cache_t::expand()
{
cacheUpdateLock.assertLocked();
uint32_t oldCapacity = capacity();
uint32_t newCapacity = oldCapacity ? oldCapacity*2 : INIT_CACHE_SIZE;
if ((uint32_t)(mask_t)newCapacity != newCapacity) {
// mask overflow - can't grow further
// fixme this wastes one bit of mask
newCapacity = oldCapacity;
}
reallocate(oldCapacity, newCapacity);
}
- 为什么类的方法列表不直接做成散列表呢,做成list,还要单独缓存,多费事?
散列表是没有顺序的,Objective-C的方法列表是一个list,是有顺序的
这个问题么,我觉得有以下三个原因:- Objective-C在查找方法的时候会顺着list依次寻找,并且category的方法在原始方法list的前面,需要先被找到,如果直接用hash存方法,方法的顺序就没法保证。
- list的方法还保存了除了selector和imp之外其他很多属性。
- 散列表是有空槽的,会浪费空间。
相关资料:
美团酒旅博文:深入理解Objective-C:方法缓存
官方文档:Messaging