RT-Thread中的串口DMA分析

这里分析一下RT-Thread中串口DMA方式的实现,以供做新处理器串口支持时的参考。

背景

在如今的芯片性能和外设强大功能的情况下,串口不实现DMA/中断方式操作,我认为在实际项目中基本是不可接受的,但遗憾的是,rt-thread现有支持的实现中,基本上没有支持串口的DMA,文档也没有关于串口DMA支持相关的说明,这里以STM32实现为背景,梳理一下串口DMA的实现流程,以供新处理器实现时以作参考。

DMA接收准备

启用DMA接收,需要在打开设备的时候做一些处理,入口函数为rt_device_open()。主体实现是:

rt_err_t rt_device_open(rt_device_t dev, rt_uint16_t oflag) { ...... result = device_init(dev); ...... result = device_open(dev, oflag); ...... } 

device_init()就是rt_serial_init()函数,其主要是调用configure()函数,

static rt_err_t rt_serial_init(struct rt_device *dev) { ...... if (serial->ops->configure) result = serial->ops->configure(serial, &serial->config); ...... } 

在stm32下,其configure()函数是stm32_configure(),其根据设备打开参数,配置STM32外设的寄存器。包括波特率、校验等串口工作参数。

device_open()函数就是rt_serial_open()函数,其主要实现是:

static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag) { ...... #ifdef RT_SERIAL_USING_DMA else if (oflag & RT_DEVICE_FLAG_DMA_RX) { if (serial->config.bufsz == 0) { struct rt_serial_rx_dma* rx_dma; rx_dma = (struct rt_serial_rx_dma*) rt_malloc (sizeof(struct rt_serial_rx_dma)); RT_ASSERT(rx_dma != RT_NULL); rx_dma->activated = RT_FALSE; serial->serial_rx = rx_dma; } else { struct rt_serial_rx_fifo* rx_fifo; rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) + serial->config.bufsz); RT_ASSERT(rx_fifo != RT_NULL); rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1); rt_memset(rx_fifo->buffer, 0, serial->config.bufsz); rx_fifo->put_index = 0; rx_fifo->get_index = 0; rx_fifo->is_full = RT_FALSE; serial->serial_rx = rx_fifo; /* configure fifo address and length to low level device */ serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *) RT_DEVICE_FLAG_DMA_RX); } dev->open_flag |= RT_DEVICE_FLAG_DMA_RX; } #endif /* RT_SERIAL_USING_DMA */ ...... #ifdef RT_SERIAL_USING_DMA else if (oflag & RT_DEVICE_FLAG_DMA_TX) { struct rt_serial_tx_dma* tx_dma; tx_dma = (struct rt_serial_tx_dma*) rt_malloc (sizeof(struct rt_serial_tx_dma)); RT_ASSERT(tx_dma != RT_NULL); tx_dma->activated = RT_FALSE; rt_data_queue_init(&(tx_dma->data_queue), 8, 4, RT_NULL); serial->serial_tx = tx_dma; dev->open_flag |= RT_DEVICE_FLAG_DMA_TX; /* configure low level device */ serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *)RT_DEVICE_FLAG_DMA_TX); } #endif /* RT_SERIAL_USING_DMA */ ...... } 

可见,其主要工作是为DMA接收准备FIFO缓冲区;为DMA发送准备发送数据缓冲队列,但是好像STM32中断并没有用到发送数据缓冲。

DMA配置数据来源是rt_hw_usart_init()函数,缺省的配置参数由宏RT_SERIAL_CONFIG_DEFAULT决定, 这里决定了缺省的接收缓冲区参数是64字节,通讯缺省参数是:115200,8N1。

#define RT_SERIAL_RB_BUFSZ              64

DMA接收

DMA接收我们从DMA中断开始分析,DMA接收中断服务函数为UARTn_DMA_RX_IRQHandler(),其调用HAL库的DMA处理函数HAL_DMA_IRQHandler(),该函数调用回调函数HAL_UART_RxCpltCallback()或HAL_UART_RxHalfCpltCallback(),这两个函数进入真正的中断服务处理函数dma_isr(struct rt_serial_device *),主体代码如下:

static void dma_isr(struct rt_serial_device *serial) { ...... /* 如果是DMA-RX中断 */ if ((__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_TC) != RESET) || (__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_HT) != RESET)) { level = rt_hw_interrupt_disable(); /* 得到本次接收到的数据量 */ recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle)); if (recv_total_index == 0) { /* 这一句代码,是什么意思? */ recv_len = serial->config.bufsz - uart->dma_rx.last_index; } else { /* 减去以前接收到的数据量,得到本次接收到的数据数量 */ recv_len = recv_total_index - uart->dma_rx.last_index; } /* 更新接收历史数据量 */ uart->dma_rx.last_index = recv_total_index; rt_hw_interrupt_enable(level); if (recv_len) { /* 如果有新数据,调用serial设备模块的通用处理 */ rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8)); } } } 

在serial模块的函数rt_hw_serial_isr()中,主体代码是:

void rt_hw_serial_isr(struct rt_serial_device *serial, int event) { ...... case RT_SERIAL_EVENT_RX_DMADONE: { int length; rt_base_t level; /* get DMA rx length */ length = (event & (~0xff)) >> 8; if (serial->config.bufsz == 0) { /* 这个case的处理逻辑不知道怎么应用,看起来STM32实现并没有处理这个case */ struct rt_serial_rx_dma* rx_dma; rx_dma = (struct rt_serial_rx_dma*) serial->serial_rx; RT_ASSERT(rx_dma != RT_NULL); RT_ASSERT(serial->parent.rx_indicate != RT_NULL); serial->parent.rx_indicate(&(serial->parent), length); rx_dma->activated = RT_FALSE; } else { /* disable interrupt */ level = rt_hw_interrupt_disable(); /* update fifo put index, 将数据放入接收缓冲区 */ rt_dma_recv_update_put_index(serial, length); /* calculate received total length, 更新缓冲区信息 */ length = rt_dma_calc_recved_len(serial); /* enable interrupt */ rt_hw_interrupt_enable(level); /* invoke callback, 通知上层,有新数据到达 */ if (serial->parent.rx_indicate != RT_NULL) { serial->parent.rx_indicate(&(serial->parent), length); } } break; } ...... } 

上层接到通知后,读取函数最终调用驱动读函数rt_serial_read()函数,在DMA的条件下,调用_serial_dma_rx()从缓冲区读取数据。其代码为:

static rt_size_t rt_serial_read(struct rt_device *dev, rt_off_t pos, void *buffer, rt_size_t size) { ...... else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX) { return _serial_dma_rx(serial, (rt_uint8_t *)buffer, size); } ...... } 

DMA发送

DMA发送从驱动写函数rt_serial_write()开始,在DMA的条件下,调用_serial_dma_tx(),_serial_dma_tx()再调用操作的DMA发送函数发送数据,代码为:

static rt_size_t rt_serial_write(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size) { ...... else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX) { return _serial_dma_tx(serial, (const rt_uint8_t *)buffer, size); } ...... } 
rt_inline int _serial_dma_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length) { ...... /* make a DMA transfer */ serial->ops->dma_transmit(serial, (rt_uint8_t *)data, length, RT_SERIAL_DMA_TX); ...... } 

STM32的dma_transmit()实现函数是stm32_dma_transmit(),其实现就是简单调用HAL_UART_Transmit_DMA(),代码为:

static rt_size_t stm32_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction) { ...... if (HAL_UART_Transmit_DMA(&uart->handle, buf, size) == HAL_OK) ...... } 

实现非常简单。

 
 
 
 
 

你可能感兴趣的:(RT-Thread中的串口DMA分析)