基于Netty的IdleStateHandler实现Mqtt心跳

基于Netty的IdleStateHandler实现Mqtt心跳

IdleStateHandler解析

最近研究jetlinks编写的基于Nettymqtt-client(https://github.com/jetlinks/netty-mqtt-client),总结若干知识点.
Netty中,实现心跳机制较为简单,主要依赖于IdleStateHandler判断channel的读写超时.

    /**
     * Creates a new instance firing {@link IdleStateEvent}s.
     *
     * @param readerIdleTimeSeconds
     *        an {@link IdleStateEvent} whose state is {@link IdleState#READER_IDLE}
     *        will be triggered when no read was performed for the specified
     *        period of time.  Specify {@code 0} to disable.
     * @param writerIdleTimeSeconds
     *        an {@link IdleStateEvent} whose state is {@link IdleState#WRITER_IDLE}
     *        will be triggered when no write was performed for the specified
     *        period of time.  Specify {@code 0} to disable.
     * @param allIdleTimeSeconds
     *        an {@link IdleStateEvent} whose state is {@link IdleState#ALL_IDLE}
     *        will be triggered when neither read nor write was performed for
     *        the specified period of time.  Specify {@code 0} to disable.
     */
    public IdleStateHandler(
            int readerIdleTimeSeconds,
            int writerIdleTimeSeconds,
            int allIdleTimeSeconds) {

        this(readerIdleTimeSeconds, writerIdleTimeSeconds, allIdleTimeSeconds,
             TimeUnit.SECONDS);
    }

以上是IdleStateHandler的构造函数,主要依赖于三个参数readerIdleTimeSeconds,writerIdleTimeSeconds以及allIdleTimeSeconds.

如果难于理解英文注释,可参考< > https://segmentfault.com/a/1190000006931568一文中的解释:

  • readerIdleTimeSeconds, 读超时. 即当在指定的时间间隔内没有从 Channel 读取到数据时, 会触发一个 READER_IDLE 的 IdleStateEvent 事件.
  • writerIdleTimeSeconds, 写超时. 即当在指定的时间间隔内没有数据写入到 Channel 时, 会触发一个 WRITER_IDLE 的 IdleStateEvent 事件.
  • allIdleTimeSeconds, 读/写超时. 即当在指定的时间间隔内没有读或写操作时, 会触发一个 ALL_IDLE 的 IdleStateEvent 事件.

IdleStateHandler中,分别通过如下函数实现对channel读写操作事件的跟踪:

    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
        if (readerIdleTimeNanos > 0 || allIdleTimeNanos > 0) {
            reading = true;
            firstReaderIdleEvent = firstAllIdleEvent = true;
        }
        ctx.fireChannelRead(msg);
    }

    @Override
    public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
        if ((readerIdleTimeNanos > 0 || allIdleTimeNanos > 0) && reading) {
            lastReadTime = ticksInNanos();
            reading = false;
        }
        ctx.fireChannelReadComplete();
    }

    @Override
    public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
        // Allow writing with void promise if handler is only configured for read timeout events.
        if (writerIdleTimeNanos > 0 || allIdleTimeNanos > 0) {
            ctx.write(msg, promise.unvoid()).addListener(writeListener);
        } else {
            ctx.write(msg, promise);
        }
    }

    // Not create a new ChannelFutureListener per write operation to reduce GC pressure.
    private final ChannelFutureListener writeListener = new ChannelFutureListener() {
        @Override
        public void operationComplete(ChannelFuture future) throws Exception {
            lastWriteTime = ticksInNanos();
            firstWriterIdleEvent = firstAllIdleEvent = true;
        }
    };

其中:

  • channelRead: 判断channel是否有数据可读取;
  • channelReadComplete: 判断channel是否有数据可读取;
  • write: 判断channel是否有数据写(通过writeListener判断当前写操作是否执行成功).

IdleStateHandlerchannel激活或注册时,会执行initialize函数,根据读写超时时间创建对应的定时任务.

    @Override
    public void channelRegistered(ChannelHandlerContext ctx) throws Exception {
        // Initialize early if channel is active already.
        if (ctx.channel().isActive()) {
            initialize(ctx);
        }
        super.channelRegistered(ctx);
    }

    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
        // This method will be invoked only if this handler was added
        // before channelActive() event is fired.  If a user adds this handler
        // after the channelActive() event, initialize() will be called by beforeAdd().
        initialize(ctx);
        super.channelActive(ctx);
    }

        private void initialize(ChannelHandlerContext ctx) {
        // Avoid the case where destroy() is called before scheduling timeouts.
        // See: https://github.com/netty/netty/issues/143
        switch (state) {
        case 1:
        case 2:
            return;
        }

        state = 1;
        initOutputChanged(ctx);

        lastReadTime = lastWriteTime = ticksInNanos();
        if (readerIdleTimeNanos > 0) {
            // 创建读超时判断定时任务
            readerIdleTimeout = schedule(ctx, new ReaderIdleTimeoutTask(ctx),
                    readerIdleTimeNanos, TimeUnit.NANOSECONDS);
        }
        if (writerIdleTimeNanos > 0) {
            // 创建写超时判断定时任务
            writerIdleTimeout = schedule(ctx, new WriterIdleTimeoutTask(ctx),
                    writerIdleTimeNanos, TimeUnit.NANOSECONDS);
        }
        if (allIdleTimeNanos > 0) {
            // 创建读写超时判断定时任务
            allIdleTimeout = schedule(ctx, new AllIdleTimeoutTask(ctx),
                    allIdleTimeNanos, TimeUnit.NANOSECONDS);
        }
    }

此处,我们将剖析AllIdleTimeoutTask任务.
此任务,会判断在超时时间段内,是否有读写操作:

  • 有读或者写操作,则重新创建定时任务,等待下次执行;
  • 没有读或者写操作,则创建IdleStateEvent对象,通过ChannelHandlerContext通知注册了用户事件触发器的handler(即handler重载了userEventTriggered函数).
  private final class AllIdleTimeoutTask extends AbstractIdleTask {

        AllIdleTimeoutTask(ChannelHandlerContext ctx) {
            super(ctx);
        }

        @Override
        protected void run(ChannelHandlerContext ctx) {

            long nextDelay = allIdleTimeNanos;
            if (!reading) {
                nextDelay -= ticksInNanos() - Math.max(lastReadTime, lastWriteTime);
            }
            if (nextDelay <= 0) {
                // Both reader and writer are idle - set a new timeout and
                // notify the callback.
                allIdleTimeout = schedule(ctx, this, allIdleTimeNanos, TimeUnit.NANOSECONDS);

                boolean first = firstAllIdleEvent;
                firstAllIdleEvent = false;

                try {
                    if (hasOutputChanged(ctx, first)) {
                        return;
                    }

                    IdleStateEvent event = newIdleStateEvent(IdleState.ALL_IDLE, first);
                    channelIdle(ctx, event);
                } catch (Throwable t) {
                    ctx.fireExceptionCaught(t);
                }
            } else {
                // Either read or write occurred before the timeout - set a new
                // timeout with shorter delay.
                allIdleTimeout = schedule(ctx, this, nextDelay, TimeUnit.NANOSECONDS);
            }
        }
    }

了解了IdleStateHandler,我们接下来学习如何编写Mqtt的心跳handler.

Mqtt心跳handler

以下是jetlinks编写的Mqtt心跳handler代码,我们截取部分代码学习.

final class MqttPingHandler extends ChannelInboundHandlerAdapter {

    private final int keepaliveSeconds;

    private ScheduledFuture pingRespTimeout;

    MqttPingHandler(int keepaliveSeconds) {
        this.keepaliveSeconds = keepaliveSeconds;
    }

    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
        if (!(msg instanceof MqttMessage)) {
            ctx.fireChannelRead(msg);
            return;
        }
        MqttMessage message = (MqttMessage) msg;
        if (message.fixedHeader().messageType() == MqttMessageType.PINGREQ) {
            this.handlePingReq(ctx.channel());
        } else if (message.fixedHeader().messageType() == MqttMessageType.PINGRESP) {
            this.handlePingResp();
        } else {
            ctx.fireChannelRead(ReferenceCountUtil.retain(msg));
        }
    }

    /**
     * IdleStateHandler,在连接处于idle状态超过设定时间后,会发送IdleStateEvent
     * 接收到IdleStateEvent,当前类会发送心跳包至server,保持连接
     *
     * @param ctx 上下文
     * @param evt 事件
     * @throws Exception 异常
     */
    @Override
    public void userEventTriggered(ChannelHandlerContext ctx, Object evt) throws Exception {
        super.userEventTriggered(ctx, evt);

        // 确认监听事件为IdleStateEvent,即发送心跳包至server
        if (evt instanceof IdleStateEvent) {
            IdleStateEvent event = (IdleStateEvent) evt;
            if (event.state() == IdleState.WRITER_IDLE) {
                this.sendPingReq(ctx.channel());
            }
        }
    }

    /**
     * 发送心跳包至server端,并建立心跳超时断开连接任务
     * 此处,先行创建心跳超时任务,后续再发送心跳包(避免收到心跳响应时,心跳超时任务未建立完成)
     *
     * @param channel 连接
     */
    private void sendPingReq(Channel channel) {

        // 创建心跳超时,断开连接任务
        if (this.pingRespTimeout == null) {
            this.pingRespTimeout = channel.eventLoop().schedule(() -> {
                MqttFixedHeader disconnectHeader =
                        new MqttFixedHeader(MqttMessageType.DISCONNECT, false, MqttQoS.AT_MOST_ONCE, false, 0);
                channel.writeAndFlush(new MqttMessage(disconnectHeader)).addListener(ChannelFutureListener.CLOSE);
                //TODO: what do when the connection is closed ?
            }, this.keepaliveSeconds, TimeUnit.SECONDS);
        }

        // 创建心跳包,并发送至Mqtts Server
        MqttFixedHeader pingHeader = new MqttFixedHeader(MqttMessageType.PINGREQ, false, MqttQoS.AT_MOST_ONCE, false, 0);
        channel.writeAndFlush(new MqttMessage(pingHeader));
    }

    /**
     * 处理ping resp,取消ping超时任务(断开连接)
     */
    private void handlePingResp() {
        if (this.pingRespTimeout != null && !this.pingRespTimeout.isCancelled() && !this.pingRespTimeout.isDone()) {
            this.pingRespTimeout.cancel(true);
            this.pingRespTimeout = null;
        }
    }
}

函数解析:

(1) 接收超时事件,发送心跳请求

MqttPingHandler中重载了userEventTriggered函数,用以接收ChannelHandlerContext传递的事件,代码中会判断事件是否为IdleStateEvent.
如果当前接收事件为IdleStateEvent,则说明当前channel在超时时间内未发生读写事件,则客户端发送Mqtt心跳请求.

(2) 发送心跳请求,建立请求响应超时关闭连接任务

sendPingReq函数中(以下两步操作,顺序可任意安排):

  • 建立心跳请求响应超时判断任务,如果在一定时长内未接收到心跳响应,则会关闭连接;
  • 构建Mqtt心跳包,发送至远端服务器.

(3) 取消心跳响应超时关闭连接任务

channelRead读取数据,判断是否是Mqtt的心跳响应包.
如果是,则执行handlePingResp函数,取消心跳响应超时关闭连接任务.

handler添加

    ch.pipeline().addLast("idleStateHandler",
        new IdleStateHandler(keepAliveTimeSeconds, keepAliveTimeSeconds, 0));
    ch.pipeline().addLast("mqttPingHandler",
        new MqttPingHandler(MqttClientImpl.this.clientConfig.getKeepAliveTimeSeconds()));

只需要以上两句代码,就可以完成Mqtt心跳维持功能.

PS:
如果您觉得我的文章对您有帮助,可以扫码领取下红包或扫码支持(随意多少,一分钱都是爱),谢谢!

支付宝红包 支付宝 微信
基于Netty的IdleStateHandler实现Mqtt心跳_第1张图片 基于Netty的IdleStateHandler实现Mqtt心跳_第2张图片 基于Netty的IdleStateHandler实现Mqtt心跳_第3张图片

你可能感兴趣的:(基于Netty的IdleStateHandler实现Mqtt心跳)