正解:$cdq$分治
解题报告:
传送门$QwQ$
$umm$总感觉做过这题的亚子,,,?
先把坐标离散化,然后把所有点先按$x$排序$QwQ$,然后用类似平面最近点对的方法,先分别解决$mid$两侧的,然后现在就只要考虑两个端点分别在两侧的点了$QwQ$
考虑枚举右上的点然后计算左下有多少个点满足条件?
首先对于左下的点,由条件二可得显然是要维护一个横坐标单增纵坐标单减的单调栈
然后对于右上的点$(x_i,y_i)$,发现就找到满足$y\leq y_i,x\leq x_i$的点的$y_{max}$,然后在左侧的单调栈中二分找到所有满足$y\geq y_{max}$的点,计入答案就成$QwQ$
然后发现这个找$y_max$的也可以用单调栈维护?就维护一个横坐标单增纵坐标单增的单调栈昂$QwQ$
然后就做完辣?$QwQ$
#includeusing namespace std; #define il inline #define gc getchar() #define ll long long #define t(i) edge[i].to #define w(i) edge[i].wei #define fy(i) edge[i].fy #define ri register int #define rb register bool #define rc register char #define rp(i,x,y) for(ri i=x;i<=y;++i) #define my(i,x,y) for(ri i=x;i>=y;--i) #define lb(x) lower_bound(st+1,st+1+n,x)-st #define e(i,x) for(ri i=head[x];i;i=edge[i].nxt) const int N=2e5+10; int n,st[N]; ll as; struct node{int x,y;}nod[N],t1[N],t2[N],stck1[N],stck2[N]; il int read() { rc ch=gc;ri x=0;rb y=1; while(ch!='-' && (ch>'9' || ch<'0'))ch=gc; if(ch=='-')ch=gc,y=0; while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc; return y?x:-x; } il bool cmp(node gd,node gs){return gd.x<gs.x;} il int fd(ri dat,ri lim) { ri l=0,r=lim; while(l >1;if(stck1[mid+1].y>dat)r=mid;else l=mid+1;} return r; } void solv(ri l,ri r) { if(l==r)return;ri mid=(l+r)>>1;solv(l,mid);solv(mid+1,r); int num1=0,num2=0,top1=0,top2=0,i=l,j=mid+1; for(j=mid+1;j<=r;++j) { t2[++num2]=nod[j]; while(i<=mid && nod[i].y<nod[j].y) { t1[++num1]=nod[i]; while(top1 && stck1[top1].x top1; stck1[++top1]=nod[i];++i; } while(top2 && stck2[top2].x>nod[j].x)--top2; stck2[++top2]=nod[j]; as+=top1-fd(stck2[top2-1].y,top1); } while(i<=mid)t1[++num1]=nod[i++]; i=1,j=1;ri nw=l-1; while(i<=num1 && j<=num2)if(t1[i].y else nod[++nw]=t2[j++]; while(i<=num1)nod[++nw]=t1[i++]; while(j<=num2)nod[++nw]=t2[j++]; } int main() { freopen("4237.in","r",stdin);freopen("4237.out","w",stdout); n=read();rp(i,1,n)nod[i]=(node){read()+1,st[i]=read()+1}; sort(st+1,st+1+n);rp(i,1,n)nod[i].y=lb(nod[i].y);sort(nod+1,nod+1+n,cmp);rp(i,1,n)nod[i].x=i; solv(1,n);printf("%lld",as); return 0; }