算法_Dijkstra_Python

本文用到的包

import networkx as nx

考虑如下网络


流网络示意图

这个网络的构建代码是

G=nx.DiGraph()
G.add_edge(0,1,weight=80)
G.add_edge(1,2,weight=50)
G.add_edge(1,3,weight=30)
G.add_edge(3,2,weight=10)
G.add_edge(2,4,weight=20)
G.add_edge(2,5,weight=30)
G.add_edge(4,5,weight=10)
G.add_edge(5,3,weight=5)
G.add_edge(2,6,weight=10)
G.add_edge(4,6,weight=10)
G.add_edge(3,6,weight=25)
G.add_edge(5,6,weight=35)

可视化绘制使用了Processing,制图代码在这里。

定义如下函数

def Dijkstra(G,start,end):
    RG = G.reverse(); dist = {}; previous = {}
    for v in RG.nodes():
        dist[v] = float('inf')
        previous[v] = 'none'
    dist[end] = 0
    u = end
    while u!=start:
        u = min(dist, key=dist.get)           
        distu = dist[u]
        del dist[u]
        for u,v in RG.edges(u):
            if v in dist:
                alt = distu + RG[u][v]['weight']
                if alt < dist[v]:
                    dist[v] = alt
                    previous[v] = u
    path=(start,)
    last= start
    while last != end:
        nxt = previous[last]
        path += (nxt,)
        last = nxt
    return path

使用这个函数寻找0与6之间的最小权重路径

Dijkstra(G,0,6)

其结果是

(0, 1, 3, 2, 6)

你可能感兴趣的:(算法_Dijkstra_Python)