- AI 行业发展趋势:科技创新引领未来变革
我是阿萌
畅聊AI人工智能科技学习
在当今数字化时代,人工智能(AI)行业正以前所未有的速度蓬勃发展,深刻地改变着我们的生活、工作和社会格局。从基础技术的突破到广泛的应用场景拓展,AI展现出了一系列令人瞩目的发展趋势,预示着一个充满无限可能的未来。一、技术创新持续突破模型规模与性能提升AI模型正朝着更大规模、更复杂的方向发展。以GPT系列为代表的大语言模型,参数数量不断攀升,从GPT-2的15亿参数到GPT-4的万亿级参数,模型的语
- 忘记rar、zip压缩包密码?教你简单方法快速解锁!
jiemidashi
经验分享
找回压缩包密码从未如此简单。您只需两步,便可以轻松解密RAR或ZIP文件。具体步骤如下:第一步,打开网页浏览器,在地址栏输入:文件密码.top进入网站。这个网站无需下载软件,操作非常简单,支持各种类型的文件,包括RAR/ZIP压缩包、Word文档、Excel表格、PDF文档、WPS表格文档和PPT演示文稿。第二步,点击“立即开始”,上传您的压缩文件。耐心等待片刻,网站会处理您的请求,快速为您找回密
- 【通缩螺旋的深度解析与科技破局路径】
调皮的芋头
机器学习神经网络
通缩螺旋的深度解析与科技破局路径一、通缩螺旋的形成机制与恶性循环通缩螺旋(DeflationarySpiral)是经济学中描述价格持续下跌与经济衰退相互强化的动态过程,其核心逻辑可拆解为以下链条:需求端萎缩:居民消费信心不足(如中国2023年消费者信心指数创历史新低),导致商品价格下行压力加剧。企业端收缩:企业收入增速放缓(2023年中国规上工业企业利润同比-2.3%),被迫削减投资/裁员(青年失
- 【儿童自信的生物学机制】
调皮的芋头
机器学习数据库
在继续深入探讨儿童自信的生物学机制时,我们需要将视角拓展至神经递质系统、突触动态平衡以及跨脑区网络整合等更深层的神经发育规律。以下从三个新颖维度展开分析:一、神经递质系统的发育失衡现象儿童自信水平随年龄增长呈现U型曲线变化的现象,确实蕴含着复杂的生物进化机制与神经发育规律。从进化生物学视角来看,人类幼态持续特征决定了早期自信的生存价值:新生儿通过哭闹表达需求(平均每天1.5小时发声),这种原始自信
- 怎么使用jwt,token以及redis进行续期?
曦月不可及?
java
怎么使用jwt,token以及redis进行续期?什么是jwt?什么是token?结合JWT、Token和Redis进行续期的一般步骤:生成JWT:用户登录成功后,服务器生成一个JWT,并返回给客户端。importio.jsonwebtoken.Jwts;importio.jsonwebtoken.SignatureAlgorithm;publicclassJwtUtil{privatestati
- 使用Redis实现分布式锁的技术详解
智能编织者
redis分布式数据库
使用Redis实现分布式锁的技术详解一、引言二、分布式锁的基本概念三、Redis实现分布式锁的原理1.SETNX命令2.SET命令的扩展参数3.Lua脚本保证原子性四、Redis实现分布式锁的步骤1.引入Redis依赖2.加锁实现3.释放锁实现4.设置锁过期时间五、代码演示1.引入依赖2.加锁与释放锁的工具类3.使用示例六、注意事项与优化1.死锁问题2.锁竞争与重试机制一、引言在分布式系统中,多个
- 编程助手学Python--Deepseek对提示词自定义模板StringPromptTemplate的理解
sunyaox
编程助手学Pythonpython开发语言
编程助手学Python--Deepseek对提示词自定义模板StringPromptTemplate的理解主要功能核心属性和方法使用场景示例代码1.基本用法2.使用f-string格式3.结合其他模板类高级用法1.自定义模板格式2.动态生成模板总结StringPromptTemplate是一种用于生成字符串提示的模板类,通常用于构建基于语言模型的应用程序。它允许你定义一个包含占位符的字符串模板,并
- Prompt工程:大模型沟通指南(人工智能到大模型)
Harry技术
AIprompt人工智能
文章目录人工智能到大模型机器学习深度学习大模型Prompt工程:大模型沟通的桥梁在人工智能的广袤领域中,大模型无疑是最为璀璨的明珠之一。它仿佛是一座连接人类与人工智能的桥梁,让我们能够更加深入地探索和利用人工智能的强大能力。而要实现与大模型的高效沟通,Prompt工程扮演着至关重要的角色。让我们一起走进Prompt工程的奇妙世界,探寻大模型沟通的奥秘。人工智能到大模型“人工智能是一种模拟人类智能的
- MySQL慢SQL优化方案详解:从诊断到根治的完整指南
jiajia651304
mysqlsqlffmpeg
MySQL慢SQL优化方案详解:从诊断到根治的完整指南一、慢SQL的致命影响当数据库响应时间超过500ms时,系统将面临三大灾难链式反应:用户体验崩塌页面加载超时率上升37%用户跳出率增加52%核心业务转化率下降29%系统稳定性危机连接池耗尽风险提升4.8倍主从同步延迟突破10秒阈值磁盘IO利用率长期超90%运维成本飙升DBA故障处理时间增加65%硬件扩容频率提高3倍夜间告警量激增80%通过监控系
- C语言初学时的难点[5][学会调试来debug]
桦0
C语言c语言算法c#c++
在C语言VS2022中,通过调试来debug是一个非常重要的技能。以下是一些详细的步骤和技巧,帮助你更好地进行调试:理解Debug与Release的区别:Debug版本:包含调试信息,并且不做任何优化,便于程序员调试程序。Release版本:进行了各种优化,使得程序在代码大小和运行速度上都是最优的,以便用户很好地使用,但不方便程序员调试。准备调试环境:在VS2022中,确保你的项目是以Debug模
- SqlServer数据库报错紧急或可疑无法访问的修复过程,亲测有效。
龙仔725
数据库sqlserveroracle
当SQLServer数据库被标记为SUSPECT状态时,表示数据库可能由于事务日志损坏、数据文件丢失或其他严重问题而无法正常启动。以下是一个详细的恢复步骤,基于搜索结果中的信息和常见的最佳实践:恢复步骤1.确认数据库状态将database-name替换为你需要修复的数据库名运行以下查询确认数据库是否为SUSPECT状态:USEmaster;GOSELECTname,state_descFROMsy
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.06.25-2024.07.01
小小帅AIGC
LLMs论文时报人工智能语言模型深度学习自然语言处理大语言模型LLM
文章目录~1.AutoCherry-Picker:LearningfromHigh-qualityGenerativeDataDrivenbyLanguage2.BioMNER:ADatasetforBiomedicalMethodEntityRecognition3.BESTOW:EfficientandStreamableSpeechLanguageModelwiththeBestofTwoW
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
深度学习人工智能机器学习
1.基本概念微调(Fine-tuning)定义:微调是指在预训练大语言模型的基础上,通过在特定领域或任务的数据上进一步训练,从而使模型在该特定任务上表现更优。目的:适应具体的任务需求,比如法律文书写作、医疗问答、金融分析等,使得模型能更好地理解和生成符合领域要求的内容。过程:通常涉及准备领域特定的数据集、设计合适的损失函数、调整超参数(例如学习率、批量大小等),以及选择冻结或解冻部分参数来更新模型
- 大语言模型(LLMs)全面学习指南(非常详细)零基础入门到精通,收藏这一篇就够了
网络安全大白
科技程序员人工智能语言模型人工智能自然语言处理
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- Centos安装GPU驱动,使用100元显卡玩转deepseek
white.tie
centoslinux运维
步骤1:安装NVIDIA驱动程序1.1安装显卡驱动编译工具yuminstallgccmakekernel-devel1.2安装显卡驱动依赖包yuminstallvulkan-loader1.3下载驱动安装https://www.nvidia.cn/drivers/details/220730/chmodu+xNVIDIA-Linux-x86_64-550.54.15.run./NVIDIA-Lin
- 十分钟学会微调大语言模型
喝不喝奶茶丫
语言模型人工智能自然语言处理大模型大模型应用AI大模型微调
在之前的文章中,我分享了一些使用大语言模型开发应用的方法,也介绍了几个开源大语言模型的部署方式,有同学给我留言说想知道怎么训练自己的大语言模型,让它更贴合自己的业务场景。完整的大语言模型训练成本比较高昂,不是我们业余玩家能搞的,如果我们只是想在某个业务场景或者垂直的方面加强大模型的能力,可以进行微调训练。本文就来介绍一种大语言模型微调的方法,使用的工具是我最近在用的TextGenerationWe
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习机器学习
大语言模型微调和大语言模型应用的区别?1.定义与目标微调(Fine-tuning)目标:调整预训练模型(如GPT、LLaMA、PaLM)的参数,使其适应特定任务或领域。核心:通过额外的训练(使用特定数据集)优化模型的性能,提升其在特定场景下的效果。例如:将通用模型微调为法律咨询、医疗诊断或金融分析的专业模型。应用(Application)目标:直接使用预训练或微调后的模型解决实际问题,无需修改模型
- C#实现动态验证码生成器:安全防护与实际应用场景
WangMing_X
C#实现各种功能工具集c#安全开发语言验证码图片
一、核心应用场景用户登录/注册验证:防止恶意程序批量注册表单提交防护:确保关键操作由真人执行API接口限流:抵御自动化脚本攻击敏感操作验证:如支付、信息修改等关键步骤数据防爬机制:保护网站内容不被爬虫抓取二、技术实现方案1.基础架构设计//验证码服务架构+------------------------+|验证码生成模块|←随机字符|(CaptchaGenerator)|+------------
- 基于扩展方法实现C#安全集合操作工具包(含完整源码)
WangMing_X
C#实现各种功能工具集c#安全集合
一、安全集合操作的价值在日常开发中,集合操作引发的NullReferenceException、IndexOutOfRangeException等异常占比高达35%。本工具包通过扩展方法实现以下核心场景的安全防护:安全索引访问防止数据绑定、列表遍历时的越界崩溃空集合防御处理避免foreach空集合导致的逻辑异常批量操作增强简化集合合并、筛选等批量操作深拷贝支持解决引用类型集合修改时的副作用问题二、
- 密码学 网络安全 科普 网络安全密码技术
黑客-秋凌
密码学web安全安全
网络加密包括密码技术和网络加密方法两个方面。一、密码技术密码技术一般分为常规密码和公钥密码。常规密码是指收信方和发信方使用相同的密钥,即加密密钥和解密密钥是相同或等价的。比较著名的常规密码算法有DES及其各种变形、IDEA、FEAL、Skipjack、RC4、RC5等。在众多的常规密码中影响最大的是DES密码。常规密码的优点是有很强的保密强度,且能经受住时间的检验和攻击,但其密钥必须通过安全的途径
- C#实现AES-CBC加密工具类(含完整源码及使用教程)
WangMing_X
C#实现各种功能工具集c#AES-CBC加密
一、AES-CBC加密应用场景AES(AdvancedEncryptionStandard)作为全球公认的安全加密标准,广泛使用在以下场景:API通信加密:保护HTTP接口传输的敏感数据(如身份令牌、支付信息)文件安全存储:加密本地配置文件、数据库连接字符串等用户隐私保护:加密存储密码、身份证号等PII(个人身份信息)跨平台数据交换:与Java/Python等其他语言实现的加密系统互通物联网设备通
- DeepSeek开源:FlashMLA深度解析:Hopper架构上的大模型推理革命
花生糖@
AIGC学习资料库AI·未来DeepSeek实用集开源架构FlashMLADeepSeek技术AIAIGC
2025年2月24日,DeepSeek以「开源周」首日发布的FlashMLA技术,重新定义了Hopper架构GPU在AI推理领域的性能极限。这款专为NVIDIAH800/H100系列优化的MLA(Multi-headLatentAttention)解码内核,通过突破性算法设计与硬件协同优化,在可变长度序列处理场景中实现了3000GB/s内存带宽与580TFLOPS计算吞吐的里程碑式突破。其开源策略
- kafka 中的 rebalance
百里自来卷
kafka数据库分布式
Kafka的Rebalance(重平衡)机制本质上是一个协调过程,用于在消费者组内动态分配分区,以保证消费任务均匀分布。Rebalance主要由KafkaConsumerGroup协议(GroupMembershipProtocol)驱动,涉及多个关键组件和步骤。以下是KafkaRebalance底层的核心实现逻辑:1.触发Rebalance的原因Kafka的Rebalance可能会在以下几种情况
- 使用Redis实现分布式锁的技术详解
my1121716951
redis分布式数据库
使用Redis实现分布式锁的技术详解一、引言二、分布式锁的基本概念三、Redis实现分布式锁的原理1.SETNX命令2.SET命令的扩展参数3.Lua脚本保证原子性四、Redis实现分布式锁的步骤1.引入Redis依赖2.加锁实现3.释放锁实现4.设置锁过期时间五、代码演示1.引入依赖2.加锁与释放锁的工具类3.使用示例六、注意事项与优化1.死锁问题2.锁竞争与重试机制一、引言在分布式系统中,多个
- 大模型生成人物关系思维导图的实战教程
herosunly
大模型生成人物关系生成思维导图实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了大模型生成人物关系思维导图的实战教程,希望对使用大语言模型的同学们有所帮
- 使用Redis实现分布式锁的技术详解
QQ828929QQ
redis分布式数据库
使用Redis实现分布式锁的技术详解一、引言二、分布式锁的基本概念三、Redis实现分布式锁的原理1.SETNX命令2.SET命令的扩展参数3.Lua脚本保证原子性四、Redis实现分布式锁的步骤1.引入Redis依赖2.加锁实现3.释放锁实现4.设置锁过期时间五、代码演示1.引入依赖2.加锁与释放锁的工具类3.使用示例六、注意事项与优化1.死锁问题2.锁竞争与重试机制一、引言在分布式系统中,多个
- 如何安装dotenv,避坑指南,安装包的包名有误?
兰若姐姐
AI大模型python开发语言chatgpt
嗨,大家好,我是蓝若姐姐。最近在研究AI大模型,想写一个调用openai接口的demo,结果发现在装一个三方库的时候一直报错,mac电脑安装dotenv报错,具体情况是执行这个命令:pipinstalldotenv遇到报错:error:subprocess-exited-with-error,pipsubprocesstoinstallbackenddependenciesdidnotrunsuc
- ModuleNotFoundError: No module named ‘Crypto‘
小武小武每天练武
python开发语言
看到这个错误提示“ModuleNotFoundError:Nomodulenamed‘Crypto’”,说明Python环境中缺少Crypto模块。这通常发生在pycryptodome库没有正确安装的情况下。解决步骤1.安装pycryptodome确保你安装了pycryptodome库,这是包含Crypto模块的库。使用以下命令来安装:pipinstallpycryptodome2.检查Pytho
- Sass (Scss) 与 Less 的区别与选择
智能编织者
sassscssless
Sass与Less的区别与选择1.语法差异2.特性与支持3.兼容性4.选择建议在前端开发中,CSS预处理器如Sass(SyntacticallyAwesomeStylesheets)和Less被广泛使用,它们通过引入变量、嵌套规则、混合、函数等特性,使CSS的开发过程更加高效和灵活。Sass和Less作为两大主流CSS预处理器,各自具有独特的优点和特性。本文将详细探讨Sass(特别是其语法扩展Sc
- 征程 6 基于 Linux 和 Node-Locked License 配置 DSP 开发环境
自动驾驶算法
说明:该文档以征程6上使用的Q8DSP安装为例,同样的步骤在征程5上使用方法类似只是征程6使用的DSP为VP61.获取所需文件在配置征程6的DSP开发环境前,您需要获取以下文件:标准工具链发布包部分(请联系地平线项目对接人获取)OpenExplorer算法工具链Docker镜像OpenExplorer算法工具链交付包(OE包中提供了大量示例,包括DSP示例)OpenExplorer算法工具链中文文
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理