[TOC]
概述
在Strom的API中提供了LocalCluster
对象,这样在不用搭建Storm环境或者Storm集群的情况下也能够开发Storm的程序,非常方便。
基于Maven构建工程项目,其所需要的依赖如下:
org.apache.storm
storm-core
1.0.2
Storm本地开发案例1:总和计算
需求分析
需求如下:
数据源不断产生递增数字,对产生的数字累加求和
分析如下:
Strom的Topology包含Spout和Bolt两种节点类型,在这个案例中,可以使用Spout来对数据源进行处理(模拟产生数据),
然后将其发送到计算和的Bolt中,所以实际上这里只需要使用一个Spout节点和一个Bolt节点就可以了。
程序开发
在理解了Storm的设计思想后,将其与MapReduce的设计思想进行对比,再看下面的程序代码其实是非常好理解的。
OrderSpout
/**
* 数据源
*/
static class OrderSpout extends BaseRichSpout {
private Map conf; // 当前组件配置信息
private TopologyContext context; // 当前组件上下文对象
private SpoutOutputCollector collector; // 发送tuple的组件
@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
}
/**
* 接收数据的核心方法
*/
@Override
public void nextTuple() {
long num = 0;
while (true) {
num++;
StormUtil.sleep(1000);
System.out.println("当前时间" + StormUtil.df_yyyyMMddHHmmss.format(new Date()) + "产生的订单金额:" + num);
this.collector.emit(new Values(num));
}
}
/**
* 是对发送出去的数据的描述schema
*/
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("order_cost"));
}
}
SumBolt
private Long sumOrderCost = 0L;
/**
* 计算和的Bolt节点
*/
static class SumBolt extends BaseRichBolt {
private Map conf; // 当前组件配置信息
private TopologyContext context; // 当前组件上下文对象
private OutputCollector collector; // 发送tuple的组件
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
}
private Long sumOrderCost = 0L;
/**
* 处理数据的核心方法
*/
@Override
public void execute(Tuple input) {
Long orderCost = input.getLongByField("order_cost");
sumOrderCost += orderCost;
System.out.println("商城网站到目前" + StormUtil.df_yyyyMMddHHmmss.format(new Date()) + "的商品总交易额" + sumOrderCost);
StormUtil.sleep(1000);
}
/**
* 如果当前bolt为最后一个处理单元,该方法可以不用管
*/
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
}
StormLocalSumTopology
/**
* 1°、实现数字累加求和的案例:数据源不断产生递增数字,对产生的数字累加求和。
*
* Storm组件:Spout、Bolt、数据是Tuple,使用main中的Topology将spout和bolt进行关联
* MapReduce的组件:Mapper和Reducer、数据是Writable,通过一个main中的job将二者关联
*
* 适配器模式(Adapter):BaseRichSpout,其对继承接口中一些没必要的方法进行了重写,但其重写的代码没有实现任何功能。
* 我们称这为适配器模式
*/
public class StormLocalSumTopology {
/**
* 构建拓扑,相当于在MapReduce中构建Job
*/
public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
/**
* 设置spout和bolt的dag(有向无环图)
*/
builder.setSpout("id_order_spout", new OrderSpout());
builder.setBolt("id_sum_bolt", new SumBolt())
.shuffleGrouping("id_order_spout"); // 通过不同的数据流转方式,来指定数据的上游组件
// 使用builder构建topology
StormTopology topology = builder.createTopology();
// 启动topology
LocalCluster localCluster = new LocalCluster(); // 本地开发模式,创建的对象为LocalCluster
String topologyName = StormLocalSumTopology.class.getSimpleName(); // 拓扑的名称
Config config = new Config(); // Config()对象继承自HashMap,但本身封装了一些基本的配置
localCluster.submitTopology(topologyName, config, topology);
}
}
需要说明的是,Spout和Bolt的类都作为StormLocalSumTopology的静态成员变量,这样做是为了开发的方便,当然实际上也可以将其单独作为一个文件。
测试
执行主函数,其输出如下:
当前时间20180412213836产生的订单金额:1
商城网站到目前20180412213836的商品总交易额1
当前时间20180412213837产生的订单金额:2
商城网站到目前20180412213837的商品总交易额3
当前时间20180412213838产生的订单金额:3
商城网站到目前20180412213838的商品总交易额6
......
Storm本地开发案例2:单词统计
需求分析
需求如下:
监控一个目录下的文件,当发现有新文件的时候,把文件读取过来,解析文件中的内容,统计单词出现的总次数
分析如下:
可以设置三个节点:
Spout:用于持续读取目录下需要被监听(通过后缀名标识)的文件,并且将每一行输出到下一个Bolt中
(类似于MapReduce中的FileInputFormat)
Bolt1:读取行,并解析其中的单词,将每个单词输出到下一个Bolt中
(类似于MapReduce中的Mapper)
Bolt2:读取单词,进行统计计算
(类似于MapReduce中的Reducer)
程序开发
FileSpout
/**
* Spout,获取数据源,这里是持续读取某一目录下的文件,并将每一行输出到下一个Bolt中
*/
static class FileSpout extends BaseRichSpout {
private Map conf; // 当前组件配置信息
private TopologyContext context; // 当前组件上下文对象
private SpoutOutputCollector collector; // 发送tuple的组件
@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
}
@Override
public void nextTuple() {
File directory = new File("D:/data/storm");
// 第二个参数extensions的意思就是,只采集某些后缀名的文件
Collection files = FileUtils.listFiles(directory, new String[]{"txt"}, true);
for (File file : files) {
try {
List lines = FileUtils.readLines(file, "utf-8");
for(String line : lines) {
this.collector.emit(new Values(line));
}
// 当前文件被消费之后,需要重命名,同时为了防止相同文件的加入,重命名后的文件加了一个随机的UUID,或者加入时间戳也可以的
File destFile = new File(file.getAbsolutePath() + "_" + UUID.randomUUID().toString() + ".completed");
FileUtils.moveFile(file, destFile);
} catch (IOException e) {
e.printStackTrace();
}
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("line"));
}
}
SplitBolt
/**
* Bolt节点,将接收到的每一行数据切割为一个个单词并发送到下一个节点
*/
static class SplitBolt extends BaseRichBolt {
private Map conf; // 当前组件配置信息
private TopologyContext context; // 当前组件上下文对象
private OutputCollector collector; // 发送tuple的组件
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
}
@Override
public void execute(Tuple input) {
String line = input.getStringByField("line");
String[] words = line.split(" ");
for (String word : words) {
this.collector.emit(new Values(word,1));
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
WCBolt
/**
* Bolt节点,执行单词统计计算
*/
static class WCBolt extends BaseRichBolt {
private Map conf; // 当前组件配置信息
private TopologyContext context; // 当前组件上下文对象
private OutputCollector collector; // 发送tuple的组件
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
}
private Map map = new HashMap<>();
@Override
public void execute(Tuple input) {
String word = input.getStringByField("word");
Integer count = input.getIntegerByField("count");
/*if (map.containsKey(word)) {
map.put(word, map.get(word) + 1);
} else {
map.put(word, 1);
}*/
map.put(word, map.getOrDefault(word, 0) + 1);
System.out.println("====================================");
map.forEach((k ,v)->{
System.out.println(k + ":::" +v);
});
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
}
StormLocalWordCountTopology
/**
* 2°、单词计数:监控一个目录下的文件,当发现有新文件的时候,
把文件读取过来,解析文件中的内容,统计单词出现的总次数
E:\data\storm
*/
public class StormLocalWordCountTopology {
/**
* 构建拓扑,组装Spout和Bolt节点,相当于在MapReduce中构建Job
*/
public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
// dag
builder.setSpout("id_file_spout", new FileSpout());
builder.setBolt("id_split_bolt", new SplitBolt()).shuffleGrouping("id_file_spout");
builder.setBolt("id_wc_bolt", new WCBolt()).shuffleGrouping("id_split_bolt");
StormTopology stormTopology = builder.createTopology();
LocalCluster cluster = new LocalCluster();
String topologyName = StormLocalWordCountTopology.class.getSimpleName();
Config config = new Config();
cluster.submitTopology(topologyName, config, stormTopology);
}
}
测试
执行程序后,往目标目录中添加.txt
文件,程序输出如下:
====================================
hello:::1
====================================
hello:::1
you:::1
====================================
hello:::2
you:::1
====================================
hello:::2
he:::1
you:::1
====================================
hello:::3
he:::1
you:::1
====================================
me:::1
hello:::3
he:::1
you:::1
Storm名词术语解释
在编写了Storm的程序后,再来看看其相关的术语就容易理解很多了。
- Topology
Topology用于封装一个实时计算应用程序的逻辑,类似于Hadoop的MapReduce Job
- Stream消息流
Stream 消息流,是一个没有边界的tuple序列,这些tuples会被以一种分布式的方式并行地创建和处理
- Spouts消息源
Spouts 消息源,是消息生产者,他会从一个外部源读取数据并向topology里面面发出消息:tuple
- Bolts消息处理者
Bolts 消息处理者,所有的消息处理逻辑被封装在bolts里面,处理输入的数据流并产生新的输出数据流,
可执行过滤,聚合,查询数据库等操作
- Task
Task 每一个Spout和Bolt会被当作很多task在整个集群里面执行,每一个task对应到一个线程.
- Stream groupings 消息分发策略
Stream groupings 消息分发策略,定义一个Topology的其中一步是定义每个tuple接受什么样的流作为输入,
stream grouping就是用来定义一个stream应该如何分配给Bolts们.