浅谈线段树分治

线段树分治

首先我们要理解线段树(现在指狭义的线段树)是什么。

线段树是一种容易维护区间的数据结构,是一种区间分治实体化的产物。

准确来说,比如你维护区间 [L,R],

其实就可以不断以中点分治下去。

由于每次分治区间长度都会除以 2 ,所以最多分治 log层,就形成了线段树。

那么线段树分治指什么呢?

实际上是一种维护时间区间的数据结构,同样是利用线段树的分治性,让复杂度保证在了 log级别。

但是,维护时间区间的东西还有很多,

比如 CDQ 分治,KD-Tree ,这一类数据结构都能维护时间区间

那线段树分治的特殊作用在哪里呢?

实际上,一般而言,它的作用就是支持撤销操作,或者说就是维护了一个操作影响的时间区间.

例题:

题目大意
有一幅图,n个点,m条边,边有边权。

有三种操作:加边,删边,询问把图划分为两个点 集后两个端点属于同一个点集的边的最大值的最小值。

solution:

每次询问将当前存在的边排序后,从大到小依次加入,若加入一条边后出现奇环,则这条边就是答案

可以发现,那些加进去只产生偶环的边是没有用的

因此只 有O(n)条边是有用的(即不产生环的边和第一次产生奇环的边)。

考虑线段树分治,把每条边按其存在时间的区间加入到线段树中。

对线段树每个节点,会 有许多条边。

预处理出每个节点上有用的O(n)条边。

然后每次询问就是把O(logn)个节点上的 信息合并。

令询问次数为Q。

由于可以将询问看作时间点建线段树,那么线段树中只有O(Q)个节点。

每个节点的信息可以由其父亲得来

#include
using namespace std;
const int MAX_N=5+1e3;
int n;
struct DSF{
    int fa[MAX_N],p[MAX_N];
    void make_set(int x){ fa[x]=x,p[x]=0; }
    int find_set(int x){ //并查集维护奇偶性
        if(fa[x]!=x){
            int y=fa[x];
            fa[x]=find_set(fa[x]);
            p[x]^=p[y];
        }
        return fa[x];
    }
    bool merge(int x,int y){
        if(find_set(x)==find_set(y))
            return p[x]^p[y];
        int u=find_set(x),v=find_set(y);
        p[u]=p[x]^p[y]^1;
        fa[u]=v;
        return true;
    }
    bool member(int x,int y){
        return find_set(x)==find_set(y);
    }
}dsf;
struct E{ int x,y,k; };
struct Q{ E x; int l,r; };
inline bool operator<(E a,E b){ return a.k>b.k; }
vector e;
struct SEG{
    vector tree[MAX_N<<2];
    void build(int p,int l,int r){
        tree[p].clear(); 
        if(l==r) return;
        int mid=l+r>>1;
        build(p+p,l,mid);
        build(p+p+1,mid+1,r);
    }
    void change(int p,int l,int r,int x,int y,E key){
        if(l==x&&r==y){
            tree[p].push_back(key);
            return;
        }
        int mid=l+r>>1;
        if(y<=mid) return change(p+p,l,mid,x,y,key);
        else if(x>mid) return change(p+p+1,mid+1,r,x,y,key);
        else change(p+p,l,mid,x,mid,key),change(p+p+1,mid+1,r,mid+1,y,key);
    }
    void dfs(int p,int l,int r,vector k,int ans){    
        for(int i=0;i>1;
        dfs(p+p,l,mid,k,ans);
        dfs(p+p+1,mid+1,r,k,ans);
    }
}seg;
int main(){
    int m,q; scanf("%d%d%d",&n,&m,&q);
    e.resize(m+1); 
    for(int i=1;i<=m;++i){ 
        scanf("%d%d%d",&e[i].x.x,&e[i].x.y,&e[i].x.k);
        e[i].l=1; e[i].r=-1;
    }
    vector k; for(int i=1;i<=m;++i) k.push_back(e[i].x);
    sort(k.begin(),k.end());
    for(int i=1;i<=n;++i) dsf.make_set(i);
    int top=1;
    for(int i=1;i<=q;++i){
        char c=getchar();
        while(c<'A'||c>'Z') c=getchar();
        if(c=='D'){
            int x; scanf("%d",&x);
            e[x].r=top-1;
        }else if(c=='A'){
            e.push_back((Q){{0,0,0},0,0}); ++m;
            scanf("%d%d%d",&e[m].x.x,&e[m].x.y,&e[m].x.k);
            e[m].l=top; e[m].r=-1;
        }else{
            ++top;
        }
    }
    for(int i=1;i<=m;++i)
        if(e[i].r==-1) e[i].r=top-1;
    --top;
    seg.build(1,1,top);
    for(int i=1;i<=m;++i)
        if(e[i].l<=e[i].r)
            seg.change(1,1,top,e[i].l,e[i].r,e[i].x);
    seg.dfs(1,1,top,vector(),0);
    return 0;
}

你可能感兴趣的:(浅谈线段树分治)