- Python-玩转数据-数据分析之分析思维
人猿宇宙
数据分析pythonbigdata
一、说明当下时代的社会生产发展,人们都开始习惯于用数据来说明某个观点和反映事物的内在规律或享用自动化和人工智能带来的便利。但这些轻松快捷的方便背后,都是相关工作者的专业流程作为源源不断的支撑。二、大数据思维自从几年前大数据开始兴起,大数据思维已经逐渐被更动的人接受,随着其进一步发展,产生了巨大的生产效果。三、数据驱动的生产力作为一个数据工程师,仅仅知道跑数据是不够的,还需要通过数据发现生产环节出现
- 一文了解数字孪生是什么?数字孪生赋能哪些行业应用场景
橙子吖21
数字孪生区块链人工智能数学建模交互
导语数字孪生是物理系统向信息空间映射的关键技术,通过传感器和数据分析实现实时模拟和控制。与元宇宙不同,数字孪生强调物理对象的复现,是元宇宙的技术基础。NewIT技术支撑数字孪生的广泛应用,助力工业、城市等多领域实现虚拟与现实融合,促进经济社会创新发展。01什么是数字孪生?数字孪生,英文名为DiditalTwin(数字双胞胎),也成为数字映射、数字镜像。它的官方定义非常复杂,是这么说的:是充分利用物
- 广义加性模型的参数、半参数、非参数形式
智识小站
可解释机器学习算法
简要介绍在统计学中,广义加性模型(GAM)是一种广义线性模型,其中线性响应变量线性地依赖于一些预测变量的未知光滑函数,并且人们对这些光滑函数的推理很感兴趣。GAM最初由TrevorHastie和RobertTibshirani[1]开发,用于将广义线性模型的性质与加性模型相结合。它们可以被解释为朴素贝叶斯生成模型的判别推广。该模型将一个单变量响应变量Y和一些预测变量联系起来。为Y指定指数族分布,例
- Compose Multiplatform+kotlin Multiplatfrom
宝杰X7
androidandroidjetpackkotlinioswebappswift
ComposeMultiplatform+kotlinMultiplatfrom前言功能需求分析好用的库依赖如下shared的build.gradle下面是/gradle/libs.versions.toml下面是androidApp下的build.gradle结尾前言现在Android原生需求日渐减少,多平台或车载,端侧大模型等我看是未来的主流,上一年做了新能源DBC协议的数据可视化显示,将数据
- 【数据分析(二)】初探 Pandas
dandellion_
Python语法数据分析pandas数据挖掘
目录引言1.基本数据结构1.1.Series的初始化和简单操作1.2.DataFrame的初始化和简单操作1.2.1.初始化与持久化1.2.2.读取查看1.2.3.行操作1.2.4.列操作1.2.5.选中筛查2.数据预处理2.0.生成样例表2.1.缺失值处理2.2.类型转换和排序2.3.统计分析3.数据透视3.0.生成样例表3.1.生成透视表4.数据重塑4.1.层次化索引4.1.1.双层索引的Se
- Cognitive Architectures for Language Agents
UnknownBody
LLMAgent语言模型AI代理
本文是LLM系列文章,针对《CognitiveArchitecturesforLanguageAgents》的翻译。语言代理的认知架构摘要1引言2背景:从字符串到符号AGI3语言模型与生产系统之间的链接4语言代理的认知架构(CoALA):一个概念框架5用例6可操作的见解7讨论8结论摘要最近的努力已经将大型语言模型(LLM)与外部资源(例如,互联网)或内部控制流(例如,提示链接)结合起来,用于需要基
- 数字孪生:物联+数据打造洞察世界新视角
CServer_01
数字孪生模拟仿真工业软件
引言:数字孪生是物理系统向信息空间映射的关键技术,通过传感器、数据分析、物联网,实现实时模拟和控制。新一代信息技术支撑数字孪生的广泛应用,使其在工业、城市、交通、医疗、水利等多领域实现虚拟与现实融合,促进经济社会创新发展。如果,您可以打造任何物品、场景、城市的另一种表达形式。就如同打开上帝视角一样,可以随时随地及时监控物它的性能,预测物品的状况,并提高其效率。这种实时、持续的信息更新、交换,使得您
- 【客观对比】激光雷达 vs 纯视觉方案:汽车自动驾驶的两种路径
wit_@
TESLAcvPYTHON自动驾驶opencv激光雷达物联网安全
激光雷达vs纯视觉方案:汽车自动驾驶的两种路径导语汽车自动驾驶技术正以惊人的速度发展,未来无疑会彻底改变我们的出行方式。在这场技术竞争中,激光雷达(LiDAR)和纯视觉(Camera-based)方案是目前最为常见的两种感知技术。它们各自有独特的优势和挑战,决定了它们在自动驾驶中的应用场景和市场定位。在这篇文章中,我们将全面分析这两种技术方案,探讨它们的利与弊,并结合实际的自动驾驶车型进行对比,帮
- 详解AI大模型的主要指标与国内常见大模型对比分析
wit_@
人工智能AIGC语言模型ai大数据服务器
AI大模型的主要指标与国内常见大模型对比分析随着人工智能技术的快速发展,大模型(LargeAIModels)在自然语言处理、计算机视觉和多模态任务中取得了突破性进展。对于选择和评价AI大模型,不仅需要关注其功能,还要理解其关键指标和性能表现。本文将详细分析AI大模型的主要评价指标,并对国内常见大模型进行具体对比,提供实际数值和深度解析。一、AI大模型的主要指标AI大模型的性能和实用性通常通过以下指
- Python人工智能在气象中的应用,包括:天气预测、气候模拟、降雨量和降水预测、气象数据分析、气象预警系统
xiao5kou4chang6kai4
气象气候预报天气预测气候模拟.降雨量和降水预测气象数据分析气象预警系统python
Python人工智能在气象中有多种应用,包括:天气预测、气候模拟、降雨量和降水预测、气象数据分析、气象预警系统Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为的主流编程语言之一。人工智
- JVM 监控与分析工具你用过哪些?介绍一下。思维导图 代码示例(java 架构)
用心去追梦
jvmjava架构
JVM监控与分析工具介绍在Java应用开发和运维过程中,使用合适的监控与分析工具可以帮助我们更好地理解应用的运行状态,优化性能,诊断问题。以下是一些常用的JVM监控与分析工具及其特点和使用方法。常用的JVM监控与分析工具VisualVM特点:内置在JDK中,无需额外安装,功能强大,界面友好。功能:实时监控JVM的内存、CPU使用情况,查看线程状态,分析垃圾回收,生成和分析heapdump文件。使用
- Python自动化办公
测试开发漫漫成长路
python办公自动化自动化
一、引言以下是一个完整的Python自动化办公框架的目录结构和详细的解释。该框架将结合多种工具和技术,涵盖从数据处理到任务调度、自动化邮件发送、网页抓取等常见办公自动化任务。二、常用框架与工具pandas:使用场景:数据处理与分析描述:pandas是一个强大的数据处理库,适用于读取、清理、分析、操作Excel、CSV等表格数据。它提供了DataFrame数据结构,便于处理复杂的数据任务。典型应用:
- python 单因子方差分析_假设检验之F检验-方差分析
雏Carnation
python单因子方差分析
这一次我们来了解一下假设检验中另一个重要检验-F检验什么是F检验?F检验(F-test),最常用的别名叫做联合假设检验(英语:jointhypothesestest),此外也称方差比率检验、方差齐性检验,方差分析,它是一种在(H0)之下,统计值服从的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计总体F检验对于数据的正态性非常敏感,因此在检验方差齐
- 【拥抱AIGC】知识库构建与管理指南
soso1968
AIGC
通义灵码能够结合企业知识库的私域数据,生成贴合企业特点的回答。充分发挥检索增强技术的优势,构建高质量的企业知识数据以及合理的知识库权限管理是必不可少的。本文将为您详细介绍如何构造与管理一个高质量的企业知识库。前提条件适用版本:通义灵码企业标准版、通义灵码企业专属版。适用人员:通义灵码管理员、组织内全局管理员(专属版)。场景介绍通义灵码虽然具备广泛的通用知识,但缺乏企业独有的专业知识和数据。通过引入
- 一文读懂数据仓库构建流程(超详细)
嗨皮一会吧
数仓构建数据仓库
相信大家都知道数仓分层架构(ods、dwd、dim、dws等)。但是面对一个从0开始的数仓,我们难免会有一个疑问,应该如何去构建各层,以及数仓规划中要有哪些事实表和维度表,这个理论依据从何而来呢,相信大家看完本篇文章,可以在搭建数仓的时候有一个理论依据。1、数仓构建整体流程数仓构建核心图:我们可以发现其实数据开发占比整个数仓构建流程只是很小的部分,只要我们将前期的数据调研,各种数仓模型设计好,剩下
- 【深度学习】Huber Loss详解
小小小小祥
深度学习人工智能算法职场和发展机器学习
文章目录1.HuberLoss原理详解2.Pytorch代码详解3.与MSELoss、MAELoss区别及各自优缺点3.1MSELoss均方误差损失3.2MAELoss平均绝对误差损失3.3HuberLoss4.总结4.1优化平滑4.2梯度较好4.3为什么说MSE是平滑的1.HuberLoss原理详解HuberLoss是一种结合了MSE(均方误差)与MAE(平均绝对误差)的损失函数,旨在克服两者的
- 微信小程序单选题双击取消功能实现
d1st2nt
微信小程序小程序
因为单选题不自带双击取消功能,于是在我学习了其中的逻辑之后我决定自行编写代码实现该功能。具体实现方法:添加了一个状态变量isChecked,初始值设为false,在选项上添加了点击事件,设置了两个全局变量,在点击事件中,第一个全局变量存奇数次选择的值,第二个全局变量存偶数次选择的值,将这两个变量进行对比,如果存的值一样,设置isChecked的值为false,同时将存该选项答案的变量设为空,不一样
- DynamicDatasource动态数据源实现及使用
m0_74825074
java
文章目录动态数据源DynamicDatasource简介源码分析ThreadLocal和AbstractRoutingDataSourceDynamicRoutingDataSourceDynamicDatasource快速开始项目结构Maven依赖application.yml配置文件sql脚本动态加载数据源动态切换数据源手动实现核心类`DataSourceContextHolder`核心类`D
- 知识图谱语义搜索:构建智能化搜索未来
cooldream2009
AI技术知识图谱知识图谱人工智能
目录前言1.知识图谱语义搜索的基础概念1.1什么是知识图谱1.2什么是语义搜索1.3知识图谱语义搜索的结合2.知识图谱语义搜索的核心技术2.1自然语言处理技术2.2知识图谱构建与管理2.3图数据库与查询技术3.知识图谱语义搜索的应用场景3.1智能问答系统3.2个性化推荐3.3专业领域信息检索4.知识图谱语义搜索的未来展望4.1技术挑战4.2应用趋势结语前言随着信息技术的飞速发展,数据量呈现爆炸式增
- 国产化系统中遇到的视频花屏、卡顿以及延迟问题的记录与总结
dvlinker
C/C++软件开发从入门到实战C/C++实战专栏硬件与芯片音视频国产化系统麒麟系统飞腾CPU国产显卡视频解码播放延时与卡顿
目录1、国产化系统概述1.1、国产化操作系统与国产化CPU1.2、国产化服务器操作系统1.3、当前国产化系统的主流配置2、视频解码花屏与卡顿问题2.1、视频解码花屏2.2、视频解码卡顿2.3、关于I帧和P帧的说明3、国产显卡处理速度慢导致图像卡顿问题3.1、视频延时和卡顿原因分析3.2、SDL2库跑在景嘉微国产显卡上效率很低3.3、采用抽帧播放的方式来解决这类问题3.4、关于音视频播放中的唇音不同
- 探索LLMonitor:全面提升AI应用可观测性的开源平台
afTFODguAKBF
人工智能python
引言在构建和部署大型语言模型(LLM)和聊天模型时,开发者通常面临数据追踪、使用情况分析、成本控制等各种挑战。LLMonitor是一个开源的可观测性平台,专注于解决这些挑战。它提供了成本和使用分析、用户跟踪、追踪和评估工具。本文将详细探讨如何设置和使用LLMonitor,以提高AI应用的透明度和效率。主要内容设置LLMonitor要开始使用LLMonitor,首先需要在llmonitor.com上
- 精确掌控文本分割——利用CharacterTextSplitter轻松拆解长文档
afTFODguAKBF
python
在处理大型文本文件时,尤其是在自然语言处理和文本分析领域,有时候需要将文档分割成较小的段落以便于处理和分析。今天,我们来探讨如何使用langchain-text-splitters库中的CharacterTextSplitter来实现这一目标。引言在本文中,我将介绍如何使用CharacterTextSplitter分割大型文本文档。这种技术对于文本预处理非常重要,能够帮助我们更好地管理和分析文本数
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- 火星数据电竞数据,世界杯数据接口api,足球数据资料库
Tina0898
数据分析
电竞数据包含的内容有很多,比如说基础数据(实时比分,关键事件,赛后数据等等),统计数据(阵容分析,选手分析,地图分析等),还有资料库数据(赛事战队,赛程赛果,赛况榜单等等),众多的数据组合而成形成如今的电竞大数据。在当今电竞世界中,电子竞技的大数据可以用在多个方面,从自身来说:可以用来分析自己的强势点,可以分析对手的弱点,从而运用更好的策略来战胜对手。通过电竞大数据也可以更好地了解游戏,了解当下游
- 体育比分网站搭建的常规流程参考教程
翱翔的猪脑花
信息可视化
一、项目策划与需求分析在启动体育比分直播网站搭建项目前,首要任务是对市场进行深入的研究与分析,考察现有竞品的优势Atlaslive与CAF与不足,找准目标用户群体的需求痛点。例如,用户可能关注实时比分更新的速度与精确度,全面的赛事覆盖范围,深度的数据分析,以及便利的社交互动功能等。基于此,明确网站的定位和特色,设计出包括实时比分直播、赛事前瞻与回顾、详尽数据分析、体育新闻报道、互动社区等在内的核心
- 【学习总结|DAY031】后端Web实战(员工管理)三
123yhy传奇
学习mysqljavamybatis
一、删除员工功能实现(一)需求分析删除单条员工数据可视为特殊的批量删除,开发一个接口即可满足删除员工的功能需求,该接口需实现根据ID删除单个员工信息以及根据ID批量删除员工信息。(二)代码实现Controller层:提供两种接收请求参数的方式。通过集合接收参数的代码如下:@DeleteMappingpublicResultdelete(@RequestParamListids){log.info(
- 【学习总结|DAY028】后端Web实战(部门管理)
123yhy传奇
学习javamysqlmybatislog4jmavenweb
在Web后端开发领域,构建高效、规范且功能完备的系统是核心目标。本文将围绕Tlias智能学习辅助系统的后端开发展开,详细阐述从开发准备工作到各部门管理功能实现,以及日志技术应用的全过程,为开发者提供全面的实践参考。一、开发准备(一)开发模式与规范前后端分离开发已成为主流趋势。在这种模式下,前端项目和后端项目的开发、部署相互独立。其开发流程包括需求分析、接口设计、前后端并行开发、测试以及联调等环节。
- 加速AI模型部署:深入探索Banana的无服务架构
afTFODguAKBF
人工智能架构python
加速AI模型部署:深入探索Banana的无服务架构引言在AI模型的构建与部署中,无服务架构(ServerlessArchitecture)正逐渐成为开发者的首选方案。这种架构可以简化部署流程,提高扩展性,并降低成本。在本文中,我们将探讨如何利用Banana提供的无服务GPU推理来部署AI模型,并结合LangChain实现高效的模型推理。主要内容1.Banana生态系统的优势Banana提供了一套完
- MySQL无限极分类表设计:实战项目中的高效解决方案
MissYou-Coding
mysql数据库
在许多实战项目中,如电商系统、内容管理系统等,我们常常需要处理具有层级关系的数据,例如商品分类、文章栏目等。这些数据通常呈现出无限极分类的特点,即一个分类下可以有多个子分类,子分类下又可以有更深层次的子分类,层级关系复杂且不固定。下面将介绍一种适用于MySQL数据库的无限极分类表设计,并对其设计思路、优缺点进行详细分析,希望能为同行们提供一些有价值的参考。表结构设计我们设计的无限极分类表名为cat
- 详细分析Python爬虫中的xpath(附Demo)
码农研究僧
Pythonpython爬虫xpath
目录前言1.基本知识2.常用API3.简易Demo前言关于爬虫的基本知识推荐阅读:Python爬虫从入门到应用(超全讲解)该知识点需要提前安装相关依赖:pipinstalllxml1.基本知识XPath(XMLPathLanguage)是一种用于在XML文档中定位和选择节点的语言在XML文档中通过路径表达式(pathexpression)来定位节点,这些路径描述了节点在层次结构中的位置一、节点:在
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持