线性代数以及Python 实现

第一章:行列式

简单行列式:

线性代数以及Python 实现_第1张图片

 

线性代数以及Python 实现_第2张图片

 

三阶行列式:

线性代数以及Python 实现_第3张图片

 

 

n   阶行列式:

线性代数以及Python 实现_第4张图片

 

 

线性代数以及Python 实现_第5张图片

 

线性代数以及Python 实现_第6张图片

 

行列式的性质:

线性代数以及Python 实现_第7张图片

 

线性代数以及Python 实现_第8张图片

 

线性代数以及Python 实现_第9张图片

 

线性代数以及Python 实现_第10张图片

 

 

线性代数以及Python 实现_第11张图片

 

线性代数以及Python 实现_第12张图片

 

 

行列式的降阶(按行/按列展开):

 

线性代数以及Python 实现_第13张图片

 

 

线性代数以及Python 实现_第14张图片

 1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 
 5 if 0:
 6     d = np.array([
 7         [4, 1, 2, 4],
 8         [1, 2, 0, 2],
 9         [10, 5, 2, 0],
10         [0, 1, 1, 7]
11     ])
12     print(d)
13     print(np.linalg.det(d))
14     pass
15 
16 if 1:
17     # 练习2
18     def createD(a, x, n):
19         # 构建函数,生成一个n阶的行列式,其中对角线值为x,其余为a
20         d = np.eye(n)
21         d = d * x
22         d[d == 0] = a
23         return d
24 
25 
26     d = createD(5, 20, 10)
27     print(d)
28     print(np.linalg.det(d))
29     pass
View Code

 

 

第二章:矩阵

线性代数以及Python 实现_第15张图片

 

线性代数以及Python 实现_第16张图片

矩阵的运算:

线性代数以及Python 实现_第17张图片

 

线性代数以及Python 实现_第18张图片

 

 

线性代数以及Python 实现_第19张图片

 

线性代数以及Python 实现_第20张图片

 

线性代数以及Python 实现_第21张图片

线性代数以及Python 实现_第22张图片

逆矩阵:

 

 

线性代数以及Python 实现_第23张图片

 

线性代数以及Python 实现_第24张图片

 

线性代数以及Python 实现_第25张图片

 

线性代数以及Python 实现_第26张图片

 

线性代数以及Python 实现_第27张图片

 

 1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 
 5 #构造矩阵
 6 if 0:
 7     d = np.arange(50).reshape(10,5)
 8     # print(d)
 9 
10     d2 = np.eye(10)*10
11     # print(d2)
12 
13     d3 = np.arange(10).reshape((10,1))  #列向量
14     # print(d3)
15 
16     pass
17 
18 #矩阵的运算
19 if 0:
20     d1 = np.arange(12).reshape(3,4)
21     d2 = np.arange(10,22).reshape((3,4))
22     # print(d1)
23     # print(d2)
24     d3 = np.ones((3,4))
25     d4 = np.ones((3,5))
26     # print(d3)
27     # print(d4)
28 
29 
30     #矩阵加法  (shape 需要相同)
31     # print(d1+d2)
32 
33     #数字与矩阵的乘法
34     res = 10*d1
35     # print(res)
36 
37     #数组乘法
38     res = d1*d2
39     # print(res)
40 
41     #矩阵乘法
42     d5 = np.arange(12).reshape((3,4))
43     d6 = np.arange(10,22).reshape((4,3))
44     res = np.dot(d5,d6)  #dot product 点积
45     # print(res)
46 
47     #矩阵的转置
48     res = d5.T
49     # print(res)
50 
51     #逆矩阵
52     d6 = np.arange(1,10).reshape((3,3))
53     d6[0][0] = 0
54     print(d6)
55     res = np.linalg.inv(d6)  #inv 可以求出逆矩阵
56     print(res)
57     pass
View Code

 

 

第三章:矩阵变换与线性方程组:

矩阵变换:
线性代数以及Python 实现_第28张图片

 

 

 

线性代数以及Python 实现_第29张图片

 

线性代数以及Python 实现_第30张图片

 

 

线性代数以及Python 实现_第31张图片

 

线性代数以及Python 实现_第32张图片

 

线性代数以及Python 实现_第33张图片

 

线性代数以及Python 实现_第34张图片

 

线性方程组:

线性代数以及Python 实现_第35张图片

 

线性代数以及Python 实现_第36张图片

 

线性代数以及Python 实现_第37张图片

 

线性代数以及Python 实现_第38张图片

 

线性代数以及Python 实现_第39张图片

 

 1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 
 5 #计算秩
 6 if 0:
 7     a = np.array([
 8         [1, 2, 3],
 9         [2, 3, -5],
10         [4, 7, 1]
11     ])
12     b = np.array([
13         [3, 2, 0, 5, 0],
14         [3, -2, 3, 6, -1],
15         [2, 0, 1, 5, -3],
16         [1, 6, -4, -1, 4]
17     ])
18     res1 = np.linalg.matrix_rank(a)
19     res2 = np.linalg.matrix_rank(b)
20     # print(res1,res2)
21     pass
22 
23 #计算有多少个解
24 if 0:
25     a = np.array([
26         [1, 2, 2, 3],
27         [2, 1, -2, -2],
28         [1, -2, -4, -3]
29     ])
30     ab = np.array([
31         [1, 2, 2, 3, 0],
32         [2, 1, -2, -2, 0],
33         [1, -2, -4, -3, 0]
34     ])
35     n = 4
36     ra = np.linalg.matrix_rank(a)
37     rab = np.linalg.matrix_rank(ab)
38 
39     print(n, ra, rab)  #n= 4  ra = 3 rb =3  此时有 无穷多个解
40     pass
41 
42 if 1:
43     a = np.array([
44         [4, 2, -1],
45         [3, -1, 2],
46         [11, 3, 0]
47     ])
48     ab = np.array([
49         [4, 2, -1, 2],
50         [3, -1, 2, 10],
51         [11, 3, 0, 8]
52     ])
53     n = 4
54     ra = np.linalg.matrix_rank(a)
55     rab = np.linalg.matrix_rank(ab)
56 
57     print(n, ra, rab) # 4 2 3  ra != rb  因此无解  
58     pass
View Code

 

第四章:向量,矩阵及其对角化:

线性代数以及Python 实现_第40张图片

 

线性代数以及Python 实现_第41张图片

 

线性代数以及Python 实现_第42张图片

 

线性代数以及Python 实现_第43张图片

 

 

线性代数以及Python 实现_第44张图片

 

线性代数以及Python 实现_第45张图片

 

线性代数以及Python 实现_第46张图片

 

线性代数以及Python 实现_第47张图片

 

线性代数以及Python 实现_第48张图片

 

线性代数以及Python 实现_第49张图片

 

线性代数以及Python 实现_第50张图片

 

 1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 
 5 #计算方阵的特征值 np.linalg.eigvals()
 6 #np.linalg.eig() → 返回包含特征值和对应特征向量的元组
 7 if 0:
 8     a = np.array([
 9         [3, -1],
10         [-1, 3]
11     ])
12     print(np.linalg.eigvals(a))
13     print(np.linalg.eig(a))
14     pass
15 
16 
17 #方阵的对角化  np.diag() → 对角化
18 if 0:
19     a = np.array([
20         [-2, 1, 1],
21         [0, 2, 0],
22         [-4, 1, 3]
23     ])
24     #特征值
25     vals = np.linalg.eigvals(a)
26     #对角化矩阵
27     print(np.diag(vals))
28     pass
View Code

 

你可能感兴趣的:(线性代数以及Python 实现)