CentOS 6 开机流程——linux由kernel和rootfs组成。kernel负责进程管理、内存管理、网络管理、驱动程序、文件系统、安全等;rootfs由程序和glibc组成,完善操作系统的功能。同时linux内核的特点是模块化,通过对模块装载卸载可以对内核功能自定义。linux内核镜像文件:/boot/vmlinuz-2.6.32-696.el6.x86_64



整体的流程

  • BIOS/开机自检

  • MBR引导(Boot Loader)

  • 启动内核

  • 启动第一个进程init


一、BIOS/开机自检

1.1 微控制器

    系统想要启动必须先加载BIOS,按下电源键时,给微控制器下达一条复位指令,各寄存器复位,最后下达一条跳转指令,跳转到BIOS的ROM,使得硬件去读取主板上的BIOS程序,在这之前都是由硬件来完成,之后硬件就会把控制权交给BIOS;

1.2 BIOS->POST

    随后BIOS程序加载CMOS(可读写的RAM芯片,保存BIOS设置硬件参数的数据)的信息,借CMOS取得主机的各项硬件配置

    取得硬件配置的信息之后,BIOS进行加电自检(Power-on self Test,POST)过程,检测计算机各种硬件信息,如果发现硬件错误则会报错(发出声音警告)

    之后BIOS对硬件进行初始化

    BIOS将自己复制到物理内存中继续执行,开始按顺序搜寻可引导存储设备,决定存储设备的顺序(即定义第一个可引导的磁盘,当然是在有两个磁盘的前提),接下来就会读取磁盘的内容,但是要读取磁盘文件必须要有文件系统,这对BIOS挂载文件系统来说是不可能,因此需要一个不依赖文件系统的方法使得BIOS读取磁盘内容,这种方法就是引入MBR。最后BIOS通过INT 13硬件中断功能读取第一个可引导的存储设备的MBR(0磁道0扇区)中的boot loader。将MBR加载到物理内存中执行。小tip:判断可引导磁盘就是判断每个磁盘前512字节结尾是否存在55AA,有就是可引导,没有就继续检查下一个磁盘。

    MBR载入内存后,BIOS将控制权转交给MBR(准确的说应该是MBR中的boot loader),然后MBR接管任务开始执行。

二、MBR引导(Boot Loader)

    载入了第一个可引导的存储设备的MBR后,MBR中的boot loader就要读取所在磁盘的操作系统核心文件(即后面所说的内核)了。

2.1 boot loader

    但是呢还存在一些问题,不同操作系统的文件系统格式不同?还有我们知道一个磁盘可以安装多个操作系统,boot loader怎么能够做到引导的就是我们想要的操作系统呢?这么多不同的功能单靠一个446字节的boot loader是远远不够的。因此必须弄一个相对应的程序来处理各自对应的操作系统核心文件,这个程序就是操作系统的loader(注意不是MBR中的boot loader),这样一来boot loader只需要将控制权交给对应操作系统的loader,让它负责去启动操作系统就行了。

    这里有张图能更好地解释boot loader的作用:

CentOS6启动过程超详解分析_第1张图片    

    解读上图内容,我们知道一个硬盘的每个分区的第一个扇区叫做boot sector,这个扇区存放的就是操作系统的loader,所以我们常说一个分区只能安装一个操作系统,如上图,第一个分区的boot sector存放着windows的loader,第二个分区放着Linux的loader,第三个第四个由于没有安装操作系统所以空着。至于MBR的boot loader是干嘛呢, boot loader有三个功能:提供选单,读取内核文件,转交给其他loader

    提供选单就是给用户提供一张选项单,让用户选择进入哪个操作系统;

    读取内核文件,我们知道系统会有一个默认启动的操作系统,这个操作系统的loader在所在分区的boot sector有一份,除此之外,也会将这个默认启动的操作系统的loader复制一份到MBR的boot loader中,这样一来MBR就会直接读取boot loader中的loader了,然后就是启动默认的操作系统;

    转交个其他的loader,当用户选择其他操作系统启动的时候,boot loader会将控制权转交给对应的loader,让它负责操作系统的启动。

    另外我看书上写,安装windows操作系统的时候,windows会主动复制一份自己的loader到MBR中的boot loader中,这种操作在linux下不会。所以我们安装多重操作系统的时候要求先安装windows,然后再安装Linux;我们假设先安装Linux,再安装windows的时候就会自动把windows的loader复制到MBR中的boot loader,这样一来就会默认优先启动windows。然而先安装windows,自动复制windows的loader到boot loader,再安装Linux的时候,我们可以设置把Linux的loader复制到boot loader中,把原先windows的覆盖掉,这样才能设置Linux默认启动。

2.2 Linux的GRUB

    Linux的loader使用的是GRUB,我们常说的Linux中的loader就是grub,我认为这种说法是不准确的,我们知道MBR的boot loader是446字节,而grub呢,不仅仅446字节。

blob.png

    那MBR的boot loader和grub到底是什么关系呢,在这里说明,GRUB是一个启动管理器,和Linux没有强制的关系,当然也可以用GRUB启动Windows。首先我们可以通过rpm -qi grub命令查看grub的版本。

CentOS6启动过程超详解分析_第2张图片

    进入/boot/grub目录下,我们可以看到很多文件,其实Linux的loader为stage1那个文件(如下图,刚好512字节),我们在安装Linux的时候,系统会把stage1文件安装到所在分区的boot sector中,同时默认Linux启动的话,也需要把stage1中的引导代码安装到MBR中的boot loader中。该文件太小,能完成的功能有限,因此Linux的loader只是简单的引导作用。

CentOS6启动过程超详解分析_第3张图片

   MBR完成了主程序的引导后,会把控制权交给GRUB,主引导程序开始加载配置文件了,但是加载这些配置文件之前需要有文件系统的支持,可是现在还没有文件系统呢,在网上查阅资料说的“GRUB内置文件系统访问支持,虽然是极度精简的,但已经具备根据路径读取相应文件的二进制流。换句话说,GRUB在不依赖Linux内核的情况下具有读取配置文件与内核映像的能力”。GRUB的内置文件系统其实是依靠stage1_5那些文件定义的,而且有不同文件系统的stage1_5。我们在安装Linux的时候会把stage1_5相关文件放到0磁道1-62扇区中(一个磁道63个扇区,划分分区是从1磁道开始的,除了MBR外,所以会有62个扇区作为保留扇区),用于定义grub的文件系统。

    而后开始读取stage2开始真正地读取配置文件grub.conf。解析/boot/grub/grub.conf文件

default=0# 默认启动第一个系统内核,即后面的title部分,1代表第二个,依次类推,
timeout=5# 设置系统留给用户选择系统内核的时间为5s。
splashimage=(hd0,0)/grub/splash.xpm.gz
# 用户选择内核时候的背景图片文件,这里的hd0,0是第一个硬盘的第一个分区,没有/dev/sdaX的概念
hiddenmenu     # 是否显示选单画面
title CentOS 6 (2.6.32-696.el6.x86_64)    # 第一个选单的名字,可以自定义
    root (hd0,0)    # 内核文件放置的分区
    kernel ... ro root= ... rhgb quiet
    # 内核文件;读取内核文件之后要挂载/目录,只读,root后跟真正的/目录挂载的分区
    # rhgb 表示默认图形显示,把启动过程覆盖掉
    # quit表示系统启动时将模块启动的详细信息屏蔽,只显示模块启动时候成功(ok or failed)
    initrd ...# 内核镜像文件

CentOS6启动过程超详解分析_第4张图片    

    总之,MBR就是加载内核文件的

三、启动内核

3.1 加载内核文件

    MBR将内核文件(代码)载入物理内存中执行,内核就是/boot/vmlinuz-2.6.32-696.el6.x86_64,观察该文件,发现这是一个压缩镜像文件。

blob.png

    控制权转交给内核后,内核重新检测各种硬件信息,(第一次为POST自检)我们前边说了,一个完整的Linux包括内核和内核之上的程序,因此内核还要加载提供这些程序功能的模块,然而这些模块都在根目录的/lib/modules/2.6.32-696.el6.x86_64下(/和/lib/modules/不能挂载不同的分区),这时候内核还没有文件系统的概念,没有文件系统就没办法挂载根目录,想要挂载根目录就需要相应的模块支持,而我们原本的问题就是如何加载模块(先有鸡后有蛋的问题)。

3.2 加载initrd

    /boot/initramfs-2.6.32-696.el6.x86_64.img文件就是解决上面问题的,我们来看一下这个文件:

file initramfs-2.6.32-696.el6.x86_64.img # 查看该文件类型
cp initramfs-2.6.32-696.el6.x86_64.img /app
cd /app
mv initramfs-2.6.32-696.el6.x86_64.img initramfs-2.6.32-696.el6.x86_64.img.gz
# gzip解压文件必须以.gz后缀
gzip -d initramfs-2.6.32-696.el6.x86_64.img.gz 
file initramfs-2.6.32-696.el6.x86_64.img 
# 查看需要借助cpio命令
mkdir init
cd init
cpio -id < /app/initramfs-2.6.32-696.el6.x86_64.img 
# 解压至/app/init目录下

blob.png    

    我们发现解压之后的内容类似于真正/目录下内容,这是因为这是一个最小化的Linux根文件系统。内核就是先把这个文件展开,形成一个虚拟文件系统,内核借虚拟文件系统装载必要的模块,完成后释放该虚拟文件系统并挂载真正的根目录。

    initrd的制作:

mkinitrd /boot/initramfs-$(uname -r).img $(uname -r)

dracut /boot/initramfs-$(uname -r).img $(uname -r)

四、启动第一个进程init

4.1 init进程:主要功能是准备软件执行的环境   

    内核完成硬件检测和加载模块后,内核会呼叫第一个进程,就是/sbin/init,至此内核把控制权交给init进程    

    读取初始化配置文件/etc/inittab,决定操作系统的runlevel,/etc/inittab内有这样一句: 

        id:runlevel:action:process 

id 代表设定的项目,没有具体的实际意义
runlevel

执行级别,0-关机、1-单用户、2-没有NFS的多用户、

3-真正的多用户、4-预留、5-Xwindows、6-reboot

action init的动作行为,initdefault表示要默认启动的runlevel
process 执行动作的指令,一般为脚本文件

4.2 /etc/rc.d/rc.sysinit

    读取/etc/rc.d/rc.sysinit系统初始化脚本,设置主机名,挂载/etc/fstab中的文件系统,修改/etc/sysctl.conf 的内核参数等各项系统环境。

    查看该脚本内容,大致功能如下

        定义主机名,如果不存在则将主机名定义为localhost;

        读取/etc/sysconfig/network文件,设置网络环境;

        挂载内存装置/proc和USB装置/sys,如果USB装置存在,则会加载usb模块并挂载usb文件系统;

        接下来是SELINUX的一些相关设置;

        设定text banner,显示欢迎界面;

        ...

        将开机启动信息存放到/var/log/dmesg中。

4.3 /etc/rc.d/rc

    执行/etc/rc.d/rc脚本,下面是/etc/rc.d/rc脚本中我们关心的代码部分:

# First, run the KILL scripts.
for i in /etc/rc$runlevel.d/K* ; do
# Check if the subsystem is already up.
subsys=${i#/etc/rc$runlevel.d/K??}
[ -f /var/lock/subsys/$subsys -o -f /var/lock/subsys/$subsys.init ] || continue
check_runlevel "$i" || continue
# Bring the subsystem down.
[ -n "$UPSTART" ] && initctl emit --quiet stopping JOB=$subsys
$i stop
[ -n "$UPSTART" ] && initctl emit --quiet stopped JOB=$subsys
done
# Now run the START scripts.
for i in /etc/rc$runlevel.d/S* ; do
# Check if the subsystem is already up.
subsys=${i#/etc/rc$runlevel.d/S??}
[ -f /var/lock/subsys/$subsys ] && continue
[ -f /var/lock/subsys/$subsys.init ] && continue
check_runlevel "$i" || continue

    根据运行级别(0123456)进入相应的/etc/rc.d/rcN.d目录,启动和关闭相关的系统服务。里边存放着一堆以K和S开头的软链接文件,分别代表对应的服务。K开头表示该运行级别下需要把该服务杀死,S开头表示该运行级别下需要把该服务开启。,上诉操作都是由/etc/rc.d/rc脚本来完成的。另外我们还注意都S和K后边的数字,他们的数字代表了读取的顺序,因为有些服务是具有一定的关联性。

    而且每个rcN.d目录内最后都会有一个S99local文件 ,该文件指向 ../rc.local脚本。

4.4 /etc/rc.d/rc.local

    系统根据runlevel执行完/etc/rc.d/rcN.d中的脚本后,调用/etc/rc.d/rc.local脚本

    这时候系统已经完成了各种必要系统服务的启动,假如我们想自定义一些指令要在开机的时候启动,我们就可以把他们放到/etc/rc.d/rc.local内,该文件默认为空。

4.5 启动终端    

    接下来会由/sbin/mingetty指令启动终端,由于系统设置启动tty1-tty6 ,所以会启动6个命令行终端。最终呈现给我们的就是这样一个画面:

CentOS6启动过程超详解分析_第5张图片