- Anthropic 的模型
调皮的芋头
深度学习神经网络机器学习人工智能
Anthropic的模型(特别是Claude系列)之所以在性能和推理能力上表现强劲,可以从技术设计、研究理念、训练方法以及应用优化等多个方面进行详细分析。以下是基于当前信息(截至2025年3月13日)和行业趋势的深入剖析:1.技术设计与安全导向Anthropic由前OpenAI研究员创立,核心理念是将安全性、可解释性和可控性融入模型设计。这种设计哲学直接影响了Claude模型的性能:Constit
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- DeepSeek 面试题精选
CarlowZJ
DeepSeek
以下是针对DeepSeek面试的精选问题及解答,涵盖技术原理、模型架构、训练方法和应用场景等方面,供面试准备参考:一、DeepSeek模型架构与技术原理1.请简述DeepSeek-V3模型的总体架构和主要创新点。架构:DeepSeek-V3基于混合专家系统(MoE)架构,包含2048个领域专家模型,通过门控网络动态分配查询请求。创新点:使用多头潜在注意力(MLA)技术,通过低秩压缩降低KV缓存需求
- 大模型中的常用名词介绍八:【特征与数据处理、伦理与公平性等】【建议收藏】
神马行空
大模型人工智能深度学习计算机视觉神经网络架构自然语言处理
本文总结了大模型领域有关特征与数据处理、伦理与公平性等其他部分的名词,并解释其含义。跳出浩如烟海的大模型知识圈层,从概念上理清大模型的基础脉络!序号模块分组说明快捷访问1模型架构与基础概念介绍了【模型架构与基础概念】相关的常见名词及含义大模型中的常用名词介绍一:【模型架构与基础概念】【建议收藏】-CSDN博客2训练方法与技术介绍了【训练方法与技术】相关的常见名词及含义大模型中的常用名词介绍二:【训
- Phi-4-multimodal:图、文、音频统一的多模态大模型架构、训练方法、数据细节
余俊晖
大语言模型多模态LLM多模态
Phi-4-Multimodal是一种参数高效的多模态模型,通过LoRA适配器和模式特定路由器实现文本、视觉和语音/音频的无缝集成。训练过程包括多阶段优化,确保在不同模式和任务上的性能,数据来源多样,覆盖高质量网络和合成数据。它的设计体现了小型语言模型在多模态任务上的潜力模型架构Phi-4-Multimodal的基础是Phi-4-Mini语言模型,这是一个3.8亿参数的模型,设计为高效处理文本任务
- PyTorch 中的混合精度训练方法,从 autocast 到 GradScalar
Syntax_CD
PyTorch必知必会pytorch人工智能python
PyTorch的混合精度训练主要由两个方法实现:amp.autocast和amp.GradScalar。在这两个工具的帮助下,可以实现以torch.float16的混合精度训练。当然,这两个方法都是模块化并且通常都会一起调用,但并不一定总是需要一起使用。参考:AutomaticMixedPrecisionpackage-torch.ampAutomaticMixedPrecisionexample
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- 一文读懂!OpenCV 实时人脸识别从 0 到 1,小白也能轻松实操的超详细教程(完整教程及源码)
AI_DL_CODE
opencv人工智能计算机视觉人脸识别
摘要:本文围绕使用OpenCV实现实时人脸识别展开。从环境搭建入手,详细介绍Python及相关库的安装。数据准备环节涵盖收集、标注及预处理步骤。深入阐述特征提取、模型训练方法,包含传统与深度学习方式,还介绍OpenCV预训练模型的使用与评估。详细讲解实时识别过程,包括打开摄像头、逐帧处理及结果显示优化。针对复杂场景,提出光照、姿态、遮挡等问题的解决办法及模型更新维护策略。通过丰富代码示例与解释,助
- 阿里深夜开源QwQ-32B模型,仅需1/10的成本即可比肩R1满血版
伪_装
LLMpython大模型LLM
QWENHUGGINGFACEMODELSCOPEDEMODISCORD凌晨3点,阿里开源了他们全新的推理模型QwQ-32B。大规模强化学习(RL)有潜力超越传统的预训练和后训练方法来提升模型性能。近期的研究表明,强化学习可以显著提高模型的推理能力。例如,DeepSeekR1通过整合冷启动数据和多阶段训练,实现了最先进的性能,使其能够进行深度思考和复杂推理。这一次,我们探讨了大规模强化学习(RL)
- AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘
m0_74825466
面试学习路线阿里巴巴chatgpt人工智能语言模型
-CSDN博客目录第一章:DeepSeek与ChatGPT的基础概述1.1DeepSeek简介1.2ChatGPT简介第二章:模型架构对比2.1Transformer架构:核心相似性2.2模型规模与参数第三章:训练方法与技术3.1预训练与微调:基础训练方法3.2强化学习与奖励建模3.3知识蒸馏与量化技术第四章:训练数据与应用4.1训练数据集:数据源的差异4.2特定领域任务:应用场景的差异第五章:代
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- STM32实战开发(172):智能体育训练记录系统
嵌入式开发项目
stm32人工智能深度学习单片机嵌入式硬件lstm
引言随着人们对健康和运动的关注,体育训练记录系统变得越来越重要。智能体育训练记录系统能够帮助运动员记录、分析并优化他们的训练数据。通过STM32微控制器结合多种传感器和数据存储模块,本文将介绍如何设计和实现一个智能体育训练记录系统。该系统能够实时采集运动员的训练数据,存储数据并通过分析生成训练报告,帮助运动员优化训练方法。项目目标本项目的目标是实现一个智能体育训练记录系统,能够实时记录运动员在训练
- Meta:基于数据关系的LLM高效预训练
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:Data-EfficientPretrainingwithGroup-LevelDataInfluenceModeling来源:arXiv,2502.14709摘要数据高效的预训练已显示出提高缩放定律的巨大潜力。本文认为有效的预训练数据应该在组级别进行管理,将一组数据点作为一个整体而不是独立的贡献者。为此,我们提出了一种新的数据高效预训练方法GroupLevelDataInfluenceMo
- 深入解析 DeepSeek R1:强化学习如何驱动大模型推理能力的进化
海棠AI实验室
智元启示录人工智能deeplearningDeepSeek-R1
引言在AI竞赛日益激烈的时代,DeepSeek-AI推出了DeepSeekR1,试图以强化学习(RL)直接训练推理能力,而非仅依赖传统的监督微调(SFT)。这一思路不仅为大规模语言模型(LLMs)带来了新的训练范式,还在跨任务推理迁移上表现出潜力。本文将深入解析DeepSeekR1的架构、训练方法和对比实验,并从多维度审视其局限性与未来发展方向。同时,我们也会在文中介绍DeepSeekR1蒸馏到多
- 深度求索:解析DeepSeek R1与V3模型的技术差异
walkskyer
AI探索deepseekdeepseek-r1deepseek-v3
深度求索:解析DeepSeekR1与V3模型的技术差异引言模型定位与核心能力DeepSeekV3应用场景及示例DeepSeekR1应用场景及示例模型架构与训练方法DeepSeekV3的架构特点DeepSeekR1的强化学习策略性能表现与基准测试DeepSeekV3的性能优势领域DeepSeekR1的性能优势领域应用场景与部署成本分析DeepSeekV3的适用场景及部署成本优势DeepSeekR1的
- 第三讲-神经网络八股
loveysuxin
Tensorflowtensorflow
一、搭建神经网络六部法tf.keras搭建神经网络六部法1、import相关模块 2、train,test #训练集、测试集3、model=tf.keras.models.Sequential #逐层搭建网络结构4、model.compile #配置训练方法,选择训练使用的优化器、损失函数和最终评价指标5、model.fit #执行训练过程,告知训练集和测试集的输入值和标签、每个batc
- DeepSeek 和 Qwen 模型快速部署指南
moton2017
深度学习运维模型部署DeepSeekQwen大型语言模型LLM人工智能AI
导读:DeepSeek-V3&DeepSeek-R1模型对比特性DeepSeek-V3DeepSeek-R1模型大小总参数量6710亿(671B),MoE架构,每个token激活370亿参数总参数量与V3相当,基于DeepSeek-V3-Base,采用类似的MoE架构训练方法包含预训练、监督微调(SFT)和强化学习(RL),使用14.8兆高品质文本进行预训练引入多阶段训练流程,冷启动微调后进行推理
- 跨语言语义理解与生成:多语言预训练方法及一致性优化策略
网罗开发
AI大模型人工智能深度学习负载均衡
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别
钟小宇
LLM人工智能语言模型
SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别STF(SupervisedFine-Tuning)和RLHF(ReinforcementLearningfromHumanFeedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。以下是它们的主要区别:1.方法概述STF(监督微调):定义:STF是指在已经预训练好的模型基础上,使用标注好的数据进一步训练模型,使其在特定任务上
- 【DeepSeek】一文详解GRPO算法——为什么能减少大模型训练资源?
FF-Studio
DeepSeekR1算法
GRPO,一种新的强化学习方法,是DeepSeekR1使用到的训练方法。今天的这篇博客文章,笔者会从零开始,层层递进地为各位介绍一种在强化学习中极具实用价值的技术——GRPO(GroupRelativePolicyOptimization)。如果你是第一次听说这个概念,也不必慌张,笔者会带领你从最基础的强化学习背景知识讲起,一步步剖析其来龙去脉,然后再结合实例讲解GRPO在实际应用中的思路和操作示
- DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
学无止尽5
机器学习人工智能
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤一、引言在机器学习的广袤天地中,大型语言模型(LLM)无疑是最为璀璨的明珠。它们凭借卓越的语言理解与生成能力,正以前所未有的方式重塑着我们与信息交互的模式。DeepSeekR1和OpenAIO1作为其中的佼佼者,代表了当前技术的前沿水准,在架构设计、训练方法、性能表现以及应用场景等诸多层面
- LLaMA3大模型技术全网最全解析——模型架构与训练方法(收录于GPT-4/ChatGPT技术与产业分析)
chenweiPhD
人工智能深度学习语言模型架构
Meta在周四(4月18日)发布了其最新大型语言模型LLaMA3。该模型将被集成到其虚拟助手MetaAI中。Meta自称8B和70B的LLaMA3是当今8B和70B参数规模的最佳模型,并在推理、代码生成和指令跟踪方面有了很大进步。(点赞是我们分享的动力)--------------------------------------------------主编作者陈巍博士,高级职称,曾担任华为系相关自
- DeepSeek-R1-Zero 与 DeepSeek-R1 的异同与优劣分析
AI生成曾小健
Deepseek原理与使用人工智能
DeepSeek-R1-Zero与DeepSeek-R1的异同与优劣分析一、相同点核心训练方法:两者均基于强化学习(RL),采用GroupRelativePolicyOptimization(GRPO)算法,通过组内样本的奖励相对比较优化策略模型。目标均为提升语言模型的复杂推理能力(如数学、代码、科学推理)。基础模型:均以DeepSeek-V3-Base作为初始模型,共享相同的架构
- 【必看】凭啥?DeepSeek如何用1/179的训练成本干到GPT-4o 98%性能
大F的智能小课
人工智能算法
一、DeepSeek降低训练成本的核心方法1.1创新训练方法DeepSeek通过独特的训练方案显著降低了训练成本。其核心策略包括减少监督微调(SFT)步骤,仅依赖强化学习(RL)技术。DeepSeek-R1-Zero版本完全跳过SFT,仅通过RL进行训练。尽管初期计算开销较大,但添加少量冷启动数据后,训练稳定性和模型推理能力大幅提升。此外,DeepSeek还采用了组相对策略优化(GRPO)算法替代
- DeepSeek-V3:模型与权重全面解析
步子哥
AGI通用人工智能人工智能
DeepSeek-V3是一款开创性的混合专家(Mixture-of-Experts,MoE)语言模型,以其创新的架构设计、高效的训练方法和卓越的性能,成为开源大语言模型领域的标杆。本文将详细解析其模型架构、权重结构和量化技术,并结合其在实际应用中的表现,带您全面了解DeepSeek-V3的技术亮点。1.模型概述DeepSeek-V3是一款拥有6710亿总参数和每个令牌激活370亿参数的混合专家语言
- 神经网络的训练过程详解
西洲啊
AI神经网络人工智能深度学习
在深度学习领域中,训练一个神经网络是一项复杂但系统的工作过程。下面将从基本概念到具体步骤逐步阐述神经网络的训练方法一、神经网络的基本概念神经网络的结构输入层:接收外部数据,通常为多维向量。隐藏层:通过激活函数对输入数据进行非线性变换,提高模型表达能力。输出层:根据隐藏层的状态产生预测结果。参数每个连接之间都有权重和偏置,用来调整信息传递强度和初始偏置值。二、训练过程概述初始化随机初始化权重和偏置,
- 混合专家模型 (MoE) 最全详细图解
DFCED
人工智能算法前沿AIGC算法学术工业技术前沿混合专家网络MOEDeepSeek人工智能深度学习大模型
随着Mixtral8x7B(announcement,modelcard)的推出,一种称为混合专家模型(MixedExpertModels,简称MoEs)的Transformer模型在开源人工智能社区引起了广泛关注。在本篇博文中,我们将深入探讨MoEs的核心组件、训练方法,以及在推理过程中需要考量的各种因素简短总结混合专家模型(MoEs):与稠密模型相比,预训练速度更快与具有相同参数数量的模型相比
- 一文搞懂DeepSeek - 开源模型R1
程序员辣条
开源人工智能Agent大模型大模型教程大模型项目DeepSeek
DeepSeek-R1作为一款开源的大型语言模型,在数学、编程和推理等多个任务上表现出了强大的性能。其纯强化学习的训练方法、开源与低成本的特性以及技术创新使得DeepSeek-R1成为了AI领域的一颗新星。**在多个基准测试中,DeepSeek-R1的表现优于或接近OpenAIo1。**例如,在AIME2024数学测试中,DeepSeek-R1的准确率接近OpenAIo1-0912的水平;在MAT
- 大语言模型多token预测技术
deepdata_cn
NLP语言模型人工智能自然语言处理
近年来,大语言模型(LLM)在自然语言处理领域取得了突破性进展,凭借其强大的语言理解和生成能力,在各种NLP任务中展现出惊人的性能。传统的基于下一个token预测的训练方法虽简单有效,但在获取语言、世界知识和推理能力方面效率不高。且这种方法使模型过于关注局部模式,忽视了“困难”的决策,导致当前先进的下一个token预测器需要比人类儿童多几个数量级的数据才能达到相同的语言水平。人类儿童在学习语言时使
- DeepSeek R1和V3区别
@Rocky
大模型语言模型
DeepSeekR1和V3是深度求索(DeepSeek)推出的两款大模型,尽管基于相似的技术框架(如混合专家架构MoE),但在设计目标、训练方法、性能表现和应用场景上存在显著差异。以下是两者的主要区别:1.模型定位与核心能力DeepSeek-V3定位为通用型大语言模型,专注于自然语言处理(NLP)、知识问答和内容生成等任务。其优势在于高效的多模态处理能力(文本、图像、音频、视频)和较低的训练成本(
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include