分块儿练习,维护每个区间有序,二分找大于它的即可
注意的是数组别开小,并且要建立两个数组用来处理边角问题
代码:
#include#define int long long #define sc(a) scanf("%lld",&a) #define scc(a,b) scanf("%lld %lld",&a,&b) #define sccc(a,b,c) scanf("%lld %lld %lld",&a,&b,&c) #define scs(a) scanf("%s",a) #define schar(a) scanf("%c",&a) #define pr(a) printf("%lld",a) #define fo(i,a,b) for(int i=a;ib;--i) #define rre(i,a,b) for(int i=a;i>=b;--i) #define prn() printf("\n") #define prs() printf(" ") #define mkp make_pair #define pii pair #define pub(a) push_back(a) #define pob() pop_back() #define puf(a) push_front(a) #define pof() pop_front() #define fst first #define snd second #define frt front() #define bak back() #define mem0(a) memset(a,0,sizeof(a)) #define memmx(a) memset(a,0x3f3f,sizeof(a)) #define memmn(a) memset(a,-0x3f3f,sizeof(a)) #define debug #define db double #define yyes cout<<"YES"< vei; typedef vector vep; typedef map mpii; typedef map mpci; typedef map mpsi; typedef deque deqi; typedef deque deqc; typedef priority_queue mxpq; typedef priority_queue ,greater > mnpq; typedef priority_queue mxpqii; typedef priority_queue ,greater > mnpqii; const int maxn=1000005; const int inf=0x3f3f3f3f3f3f3f3f; const int MOD=100000007; const db eps=1e-10; const db pi=3.1415926535; int qpow(int a,int b){int tmp=a%MOD,ans=1;while(b){if(b&1){ans*=tmp,ans%=MOD;}tmp*=tmp,tmp%=MOD,b>>=1;}return ans;} int lowbit(int x){return x&-x;} int max(int a,int b){return a>b?a:b;} int min(int a,int b){return ab||fabs(a-b)<=eps)return true;return false;} bool eql(db a,db b){if(fabs(a-b) 57){if(ch=='-')w=-1;ch=getchar();} while(ch>=48&&ch<=57){s=(s<<1)+(s<<3)+ch-48;ch=getchar();} return s*w; } inline void write(int x){ if(x<0)putchar('-'),x=-x; if(x>9)write(x/10); putchar(x%10+48); } int gcd(int a, int b){ if(a==0) return b; if(b==0) return a; if(!(a&1)&&!(b&1)) return gcd(a>>1,b>>1)<<1; else if(!(b&1)) return gcd(a,b>>1); else if(!(a&1)) return gcd(a>>1,b); else return gcd(abs(a-b),min(a,b)); } int lcm(int x,int y){return x*y/gcd(x,y);} int n,q,a[maxn],b[maxn],l,r,x; char op[5]; int tot,id[maxn],from[maxn],to[maxn]; int add[maxn]; void pre(){ re(i,1,n) a[i]=b[i]; tot=sqrt(n); re(i,1,tot) from[i]=(i-1)*tot+1, to[i]=i*tot; if(to[tot] =x) ret++; return ret; } re(i,l,to[id[l]]) if(b[i]+add[id[i]]>=x) ret++; re(i,from[id[r]],r) if(b[i]+add[id[i]]>=x) ret++; re(i,id[l]+1,id[r]-1){ int L=from[i],R=to[i]; int p=lower_bound(a+L,a+R+1,x-add[i])-a; // cout<<"??? "<