- Spring中如何使用AI
Mn孟
spring人工智能java后端
Spring是一个用于构建Java应用程序的开源框架,它可以与各种AI技术集成。要在Spring中使用AI,首先需要选择一种AI技术,如机器学习、自然语言处理等。然后可以使用SpringBoot来构建应用程序,并使用相应的AI框架或库来实现AI功能。例如,可以使用TensorFlow或PyTorch来实现机器学习功能,使用NLTK或spaCy来实现自然语言处理功能。此外,还可以使用SpringCl
- Orange3实战教程:文本挖掘---情感分析
err2008
Orange3实战教程数据挖掘深度学习机器学习人工智能自然语言处理神经网络orange3中文版
情感分析预测文本的情感倾向。输入语料库(Corpus):一组文档的集合。输出语料库(Corpus):包含每个文档情感信息的语料库。情感分析为语料库中的每个文档预测情感倾向。该方法使用了来自NLTK的Liu&Hu和Vader情感分析模块,DataScienceLab的多语言情感词典,ArthurJacobs的SentiArt,以及WalterDaelemans等人的LiLaH情感词典。所有方法均基于
- 机器翻译综述
唐风绸繆
自然语言处理机器翻译人工智能自然语言处理
机器翻译综述-CSDN博客领域词性标注-CSDN博客一、研究意义机器翻译是自然语言处理和人工智能的重要研究领域,研究如何利用计算机自动地实现不同语言之间的相互转换,也是互联网上常用的服务之一。谷歌翻译、百度翻译和微软必应翻译都提供多种语言之间的在线翻译服务。尽管机器翻译与专业翻译人员在翻译质量上仍存在较大差距,但在一些对翻译质量要求不高的场景中,或在特定的翻译任务中,机器翻译在翻译速度上具有明显优
- 自然语言处理分类
要奋斗呀
自然语言处理
NLP学习Nlp基本分类NLP领域的任务分为两个类别:第一类是人工智能NLP。包括词性标注,分词,语法解析,语言模型,信息检索,信息抽取,语义表示,文本分类。这些任务发展较为成熟,各种相关工作的主要目的是提高当前模型的性能。第二类是人工智障NLP。包括机器翻译,对话系统,问答系统。目前模型的性能尚不尽如人意,有些任务上甚至没有足够多的,真正有影响力的工作。一、文本分类--情感分类1.定义情感分类是
- 自然语言处理(NLP)核心技术:从词嵌入到Transformer
软考和人工智能学堂
人工智能#深度学习Python开发经验自然语言处理transformer人工智能
1.NLP基础与文本表示1.1文本预处理技术importreimportnltkfromnltk.corpusimportstopwordsfromnltk.stemimportPorterStemmer,WordNetLemmatizernltk.download('punkt')nltk.download('stopwords')nltk.download('wordnet')defprepr
- 鸿蒙Next语音合成技术:从文本到声音的智能转换
harmonyos
鸿蒙Next的语音合成技术通过轻量化架构实现自然语音输出。本文解析CoreSpeechKit核心能力,结合实战案例展示优化策略,助开发者打造沉浸式语音交互体验~一、技术原理与核心能力(一)合成流程拆解文本预处理:分词→词性标注→韵律分析(如识别"今天天气真好"的重音在"真")声学模型:基于Tacotron2架构生成梅尔频谱声码器合成:WaveRNN将频谱转换为语音波形(二)鸿蒙特色能力|功能模块|
- NLP(自然语言处理)技术的主要实现思路
简简单单OnlineZuozuo
m1Python领域m2Java领域自然语言处理人工智能
文章目录NLP(自然语言处理)技术的主要实现思路语句拆分建模分析NLP(自然语言处理)技术的主要实现思路NLP(自然语言处理)技术的主要实现思路是,首先利用自然语言语料库和机器学习技术,将文本信息进行分词和词性标注,从而得到计算机可以理解的结构化表示。然后,利用语义分析技术,将文本信息转换为机器可以理解的概念和语义表示,从而使机器能够正确理解文本信息的含义。最后,利用语言生成技术,将机器理解的概念
- Python情感分析实战:基于情感词典的实现
Kiki-2189
本文还有配套的精品资源,点击获取简介:本主题介绍如何使用Python进行基于情感词典的情感分析,涵盖数据预处理、情感词典应用、特征提取、情感计算等关键步骤。将通过实例演示如何利用Python的nltk、sklearn、TextBlob等库来完成这些任务,并讨论如何处理大规模数据集以及情感分析在实际应用中的用途。1.情感分析概述情感分析,也称为意见挖掘或情绪分析,是从文本数据中提取主观信息的技术。它
- 大语言模型 vs NLTK/SpaCy:NLP工具的代际跃迁与互补之道
赛卡
自然语言处理语言模型人工智能
大语言模型vsNLTK/SpaCy:NLP工具的代际跃迁与互补之道技术代际差异:从「工具包」到「智能体」的进化如果说NLTK和SpaCy是「文本处理的瑞士军刀」,那么大语言模型(LLMs)就是「会思考的AI助手」。这种代际差异体现在三个层面:1.能力维度的颠覆式突破基础任务:大模型通过「上下文学习」实现零样本/少样本分词、词性标注,如GPT-4在CoT提示下的分词准确率可达98.7%,与SpaCy
- 用Python写一个简单聊天机器人
大Q大哥
机器人python
简单聊天机器人基于Python中的nltk库和简单的规则匹配实现。那首先呢,我们需要安装nltk库和相关资源:pipinstallnltk然后,我们可以使用以下代码导入所需的库和资源,并定义一个简单的匹配函数:importrandomimportreimportnltkfromnltk.corpusimportwordnetnltk.download('punkt')nltk.download('
- python 英语分词_自然语言处理 | NLTK英文分词尝试
weixin_39640687
python英语分词
NLTK是一个高效的Python构建的平台,用来处理自然语言数据,它提供了易于使用的接口,通过这些接口可以访问超过50个语料库和词汇资源(如WordNet),还有一套用于分类、标记化、词干标记、解析和语义推理的文本处理库。NLTK可以在Windows、MacOS以及Linux系统上使用。1.安装NLTK使用pipinstallnltk命令安装NLTK库,NLTK中集成了语料与模型等的包管理器,通过
- nltk-提取词干-去除停用词
bymaymay
机器学习gitlinux自然语言处理
fromnltk.corpusimportstopwordsHereisthelist:set(stopwords.words(‘english’)){‘ourselves’,‘hers’,‘between’,‘yourself’,‘but’,‘again’,‘there’,‘about’,‘once’,‘during’,‘out’,‘very’,‘having’,‘with’,‘they’,‘o
- nltk-英文句子分词+词干化
Jo乔戈里
c#开发语言
一、准备工作①安装好nltk模块并在:nltk/nltk_data:NLTKData链接中手动下载模型并放入到对应文件夹下。具体放到哪个文件夹,先执行看报错后的提示即可。②准备pos_map.json文件,放置到当前文件夹下。该文件用于词性统一{"NN":"n","NNS":"n","NNP":"n","NNPS":"n","PRP":"n","PRP$":"n","VB":"v","VBD":"
- 中文分词与数据可视化02
晨曦543210
中文分词自然语言处理
jieba库简介jieba(结巴分词)是一个高效的中文分词工具,广泛用于中文自然语言处理(NLP)任务。它支持以下功能:分词:将句子切分为独立的词语。自定义词典:添加专业词汇或新词,提升分词准确性。关键词提取:基于TF-IDF或TextRank算法提取文本关键词。词性标注:识别词语的词性(如名词、动词)。并行分词:加速大规模文本处理。核心函数与用法1.分词功能jieba.cut(sentence,
- [自然语言处理] NLP-文本预处理-详解
AIAdvocate
自然语言处理easyui人工智能python文本预处理
一、认识文本预处理1文本预处理及其作用文本语料在输送给模型前一般需要一系列的预处理工作,才能符合模型输入的要求,如:将文本转化成模型需要的张量,规范张量的尺寸等,而且科学的文本预处理环节还将有效指导模型超参数的选择,提升模型的评估指标.2文本预处理中包含的主要环节文本处理的基本方法文本张量表示方法文本语料的数据分析文本特征处理数据增强方法2.1文本处理的基本方法分词词性标注命名实体识别2.2文本张
- LSTM的简单模型
D11PMINDER
deeplearninglstm人工智能rnn
好的,我来用通俗易懂的语言解释一下这个LSTMTagger类是如何工作的。1️⃣类的目的这个LSTMTagger类是一个用于自然语言处理(NLP)任务的模型,目的是标注输入的句子,通常用于词性标注(例如,标注每个词是名词、动词、形容词等)。它的核心是一个LSTM(长短时记忆网络),这是一种可以处理序列数据的神经网络。2️⃣模型的组成部分1.word_embeddings(词向量嵌入)self.wo
- Python贝叶斯算法进行文本主客观分析(采用文本双词模型)
lsdnh521
机器学习/大数据
from__future__importdivisionimportrefromnumpyimportones,arrayfromnumpy.lib.scimathimportlogfromnltkimport*defloadDataSet():obj=open("obj_train_data.txt",'r')sbj=open("sbj_train_data.txt",'r')lst_all=[
- Python实例题:Python实现英文新闻摘要自动提取
狐凄
实例python开发语言
目录Python实例题题目实现思路代码实现代码解释preprocess_text函数:extract_summary函数:主程序:运行思路注意事项Python实例题题目Python实现英文新闻摘要自动提取实现思路数据准备:读取英文新闻文本。文本预处理:使用nltk对新闻文本进行分词、去除停用词等操作。摘要提取:使用sumy库中的算法提取新闻摘要。结果输出:输出提取的摘要。代码实现importnlt
- Python文本数据清洗五步法:打造高质量NLP分析数据
真智AI
python自然语言处理开发语言
文本数据清洗对任何包含文本的分析或机器学习项目来说都是至关重要的,尤其是自然语言处理(NLP)或文本分析类的任务。原始文本通常存在错误、不一致以及多余信息,这些都会影响分析结果。常见问题包括拼写错误、特殊字符、多余空格以及格式不正确等。手动清洗文本数据不仅耗时,而且容易出错,尤其是在处理大规模数据集时。Python生态系统提供了如Pandas、re、NLTK和spaCy等工具,能够实现自动化处理。
- Python NLTK库【NLP核心库】全面解析
老胖闲聊
python自然语言处理开发语言
以下是关于PythonNLTK(NaturalLanguageToolkit)库的全面深入讲解,涵盖核心功能、应用场景及代码示例:NLTK库基础一、NLTK简介NLTK是Python中用于自然语言处理(NLP)的核心库,提供了丰富的文本处理工具、算法和语料库。主要功能包括:文本预处理(分词、词干提取、词形还原)句法分析(词性标注、分块、句法解析)语义分析(命名实体识别、情感分析)语料库管理(内置多
- 青少年编程与数学 02-016 Python数据结构与算法 29课题、自然语言处理算法
明月看潮生
编程与数学第02阶段青少年编程python自然语言处理编程与数学算法
青少年编程与数学02-016Python数据结构与算法29课题、自然语言处理算法一、文本预处理1.分词(Tokenization)2.停用词过滤(StopWordsRemoval)二、词性标注(Part-of-SpeechTagging)1.基于规则的词性标注2.基于统计的词性标注三、命名实体识别(NamedEntityRecognition,NER)1.基于规则的NER2.基于深度学习的NER四
- Python分词、情感分析工具——SnowNLP
weixin_30457465
本文内容主要参考GitHub:https://github.com/isnowfy/snownlpwhat'stheSnowNLPSnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并
- 阀门轴承电动车工件一键精修软件
WinDaWangGong
分享人工智能
若需定制开发“ComfyUI意见精修软件”技术栈建议:前端:React/Vue+Figma插件API(直接读取设计稿)。后端:Node.js/Python+NLP库(spaCy/NLTK)。数据库:MongoDB(存储非结构化反馈数据)。核心功能:嵌入反馈按钮到UI原型中,支持标注截图反馈。AI自动归类反馈类型(如布局、交互、视觉)。生成可视化报告,对比优化前后的用户满意度。
- 从零开始:创建你的第一个聊天机器人
master_chenchengg
pythonpython办公效率python开发IT
从零开始:创建你的第一个聊天机器人为什么聊天机器人如此流行Python在聊天机器人开发中的优势快速入门:使用ChatterBot构建对话系统ChatterBot简介:如何快速搭建一个聊天机器人自定义对话流程:让机器人更聪明深入浅出:理解自然语言处理(NLP)基础NLP是什么:从词汇到句子的理解Python中的NLP工具:NLTK与spaCy的应用NLTK简介spaCy简介实战演练:为你的聊天机器人
- OCC模块介绍
3333yyt
OCCc++3d图形渲染算法
OCC模块介绍1、OCCT介绍1、基础类——FoundationClasses2、模型数据——ModelingData3、模型算法ModelingAlgorithms4、可视化5、数据交换6、应用框架7、绘制测试工具1、OCCT介绍模块:ApplicationFrameworkTKBinTKBinLTKBinTObjTKCAFTKCDFTKLCAFTKStdTKStdLTKTObjTKVCAFTK
- 训练数据清洗(文本/音频/视频)
Psycho_MrZhang
工具音视频
多数据格式的清洗方法以下是针对多数据格式清洗方法的系统性总结,结合Python代码示例:一、数据清洗方法总览(表格对比)数据类型核心挑战关键步骤常用Python工具文本非结构化噪声去噪→分词→标准化→向量化NLTK,SpaCy,Jieba,Regex图片维度/质量差异尺寸统一→去噪→格式转换→归一化OpenCV,PIL,scikit-image音频采样/环境噪声差异降噪→重采样→分割→特征提取Li
- NLP实践:pytorch 实现基于LSTM的预训练模型以及词性分类任务
某科学の憨憨
pytorchlstmpython语言模型神经网络自然语言处理分类
环境版本配置1:CUDA版本:Cudacompilationtools,release11.8,V11.8.89在cmd中用以下指令查看nvcc-V**2:cudnn版本:**8700importtorch#用这个查看print(torch.backends.cudnn.version())3:python版本:3.94:Pytorch版本:torch2.0.0+cu1185:nltk:3.8.1
- 每天五分钟玩转深度学习PyTorch:搭建LSTM算法模型完成词性标注
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorchlstm词性标注人工智能机器学习
本文重点本文通过LSTM算法模型来解决一个实际问题,也就是如何使用LSTM完成词性预测,下面我们搭建两个模型,一个是单词级别的,另外一个是字母级别的,大概的步骤就是,字母级别的LSTM将每个单词的字母作为输入,然后取最后一个时刻作为整个单词的表示,然后将文本中所有的单词的表示stack组合构成最终的文本向量表示,然后和文本数据经过embedding层编码的向量表示cat起来,共同输入到单词级别的L
- python和nltk自然语言处理 脚本之家_NLTK基础教程:用NLTK和Python库构建机器学习应用 完整版pdf...
weixin_39834084
脚本之家
本书主要介绍如何通过NLTK库与一些Python库的结合从而实现复杂的NLP任务和机器学习应用。全书共分为10章。第1章对NLP进行了简单介绍。第2章、第3章和第4章主要介绍一些通用的预处理技术、专属于NLP领域的预处理技术以及命名实体识别技术等。第5章之后的内容侧重于介绍如何构建一些NLP应用,涉及文本分类、数据科学和数据处理、社交媒体挖掘和大规模文本挖掘等方面。目录第1章自然语言处理简介11.
- python和nltk自然语言处理 pdf_NLTK基础教程:用NLTK和Python库构建机器学习应用 完整版pdf...
weixin_39531374
pdf
本书主要介绍如何通过NLTK库与一些Python库的结合从而实现复杂的NLP任务和机器学习应用。全书共分为10章。第1章对NLP进行了简单介绍。第2章、第3章和第4章主要介绍一些通用的预处理技术、专属于NLP领域的预处理技术以及命名实体识别技术等。第5章之后的内容侧重于介绍如何构建一些NLP应用,涉及文本分类、数据科学和数据处理、社交媒体挖掘和大规模文本挖掘等方面。第1章自然语言处理简介11.1为
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul