Caffe源码理解3:Layer基类与template method设计模式

目录

  • 写在前面
  • template method设计模式
  • Layer 基类
    • Layer成员变量
    • 构造与析构
    • SetUp成员函数
    • 前向传播与反向传播
    • 其他成员函数
  • 参考

博客:blog.shinelee.me | 博客园 | CSDN

写在前面

层的概念在深度神经网络中占据核心位置,给定输入,数据在层间运算流动,最终输出结果。层定义了对数据如何操作,根据操作的不同,可以对层进行划分(具体参见Caffe Layers):

  • Data Layers:跟据文件类型和格式读取和处理数据,给网络输入
  • Vision Layers:输入特征图输出也是特征图,像卷积、池化等
  • Activation Layers:定义了逐元素的操作,输入输出shape相同,像ReLU、sigmoid等,
  • Loss Layers:比较网络最终输出与目标的偏差,以缩小偏差为目的来驱动网络向目标学习,像Softmax with Loss等
  • Common Layers:全连接层、dropout等
  • Normalization Layers:归一化层,像LRN、MVN、BN等
  • Utility Layers:特殊功能的层,像split、slice、concat等

注意,在Caffe中激活是单独的层,损失也是单独的层。所有这些层,都从一个共同的基类Layer继承而来,Layer定义了这些类共有的行为和数据部分,这篇文章的重点就是介绍这个基类。

Layer采用了template method设计模式,因此先介绍template method。

template method设计模式

template method设计模式,即在父类中定义好流程的框架,而流程中的某些步骤在子类中具体实现。下面以打开文件为例(例子来自侯捷老师),所有客户端软件打开文件的流程都是类似的,如下图所示,这个流程可以事先定义好,写在SDK里,但是,将来这个SDK要被用来打开什么类型的文件是SDK的设计者无法完全预测的,因此具体某个类型的文件该如何读取应由SDK的使用者来编写。

Caffe源码理解3:Layer基类与template method设计模式_第1张图片

那么,SDK设计者定义的流程如何在执行到文件读取步骤时使用“将来”SDK使用者编写的程序?这就需要SDK的设计者将这个步骤设计为虚函数(关于虚函数可以查看cppreference.com),将来SDK的使用者继承这个类同时重写对应的虚函数,这种实现方法就是template method设计模式,其调用顺序如下图所示。

Caffe源码理解3:Layer基类与template method设计模式_第2张图片

caffe中的基类Layer在设计时就采用了这种思想。

Layer 基类

Layer成员变量

先看一下Layer的成员变量,具体参看注释。

LayerParameter layer_param_; // 将protobuf中定义的该层的超参数等对象化存储
Phase phase_; // TRAIN or TEST,指示该层参与训练还是测试
vector > > blobs_; // 存储可学习参数(权重)param blob
vector param_propagate_down_; // 指示每个param blob是否需要计算diff
vector loss_; // 存储top blob在损失函数中的权重loss_weight(与top blob数量相同),在反向传播时会作用在梯度上
// 对于损失层loss_weight默认为1(见LossLayer的LayerSetUp),其他层默认对损失函数没有直接贡献

层所拥有的是它的可学习参数部分,输入输出都不属于层,因此输入输出blob并不是层的成员变量,而只出现在接口上层关注的是对数据的操作方式本身,这是设计时的考量。

构造与析构

构造与析构,Layer的子类不需要实现自己的构造函数,所有的set up操作应该在后面的SetUp函数中完成,构造函数中仅将纳入LayerParameter、设置pahse_以及写入初始网络权重(如果在protobuf文件中指定了的话)。

explicit Layer(const LayerParameter& param)
  : layer_param_(param) {
    // Set phase and copy blobs (if there are any).
    phase_ = param.phase();
    if (layer_param_.blobs_size() > 0) {
      blobs_.resize(layer_param_.blobs_size());
      for (int i = 0; i < layer_param_.blobs_size(); ++i) {
        blobs_[i].reset(new Blob());
        blobs_[i]->FromProto(layer_param_.blobs(i));
      }
    }
  }
virtual ~Layer() {}

SetUp成员函数

SetUp是本文最为关注的成员函数,顾名思义,其负责完成层的基础搭建工作。在Net初始化时会顺序调用每个层的SetUp函数来搭建网络,见Net::InitNet::Init利用多态+template method在一个循环中完成所有层的搭建。

// in Net::Init
for (int layer_id = 0; layer_id < param.layer_size(); ++layer_id) {
    // ……
    // After this layer is connected, set it up.
    layers_[layer_id]->SetUp(bottom_vecs_[layer_id], top_vecs_[layer_id]);
    // ……
}

// in net.hpp
/// @brief Individual layers in the net
vector > > layers_;

SetUp在设计时就采用了template method设计思想,基类Layer为所有派生类的SetUp定义好了流程框架,先检查bottom和top的blob数量是否正确,然后调用LayerSetUp为完成层“个性化”的搭建工作(如卷积层会设置pad、stride等参数),再根据层自己定义的操作以及bottom的shape去计算top的shape,最后根据loss_weight设置top blob在损失函数中的权重。其中,Reshape为纯虚函数,子类必须自己实现,CheckBlobCountsLayerSetUp为虚函数,提供了默认实现,子类也可以定义自己的实现。一般,SetUp的执行顺序为:

  • 进入父类的SetUp函数
  • 执行父类的CheckBlobCounts,在这个函数中会执行子类的ExactNumBottomBlobs等函数
  • 执行子类的LayerSetUp
  • 执行子类的Reshape
  • 执行父类的SetLossWeights
  • 退出父类的SetUp函数
void SetUp(const vector*>& bottom,
    const vector*>& top) {
  CheckBlobCounts(bottom, top);
  LayerSetUp(bottom, top);
  Reshape(bottom, top);
  SetLossWeights(top);
}
virtual void CheckBlobCounts(const vector*>& bottom,
    const vector*>& top) {
    // 实现具体省略
    /* check that the number of bottom and top Blobs provided as input 
     match the expected numbers specified 
     by the {ExactNum,Min,Max}{Bottom,Top}Blobs() functions
    */
    }

/* This method should do one-time layer specific setup. This includes reading
* and processing relevent parameters from the layer_param_.
* Setting up the shapes of top blobs and internal buffers should be done in
* Reshape, which will be called before the forward pass to
* adjust the top blob sizes.
*/
virtual void LayerSetUp(const vector*>& bottom,
    const vector*>& top) {}

/* This method should reshape top blobs as needed according to the shapes
* of the bottom (input) blobs, as well as reshaping any internal buffers
* and making any other necessary adjustments so that the layer can
* accommodate the bottom blobs.
*/
virtual void Reshape(const vector*>& bottom,
    const vector*>& top) = 0;

/**
* Called by SetUp to initialize the weights associated with any top blobs in
* the loss function. Store non-zero loss weights in the diff blob.
*/
inline void SetLossWeights(const vector*>& top) {
  const int num_loss_weights = layer_param_.loss_weight_size();
  if (num_loss_weights) {
    CHECK_EQ(top.size(), num_loss_weights) << "loss_weight must be "
        "unspecified or specified once per top blob.";
    for (int top_id = 0; top_id < top.size(); ++top_id) {
      const Dtype loss_weight = layer_param_.loss_weight(top_id);
      if (loss_weight == Dtype(0)) { continue; }
      this->set_loss(top_id, loss_weight);
      const int count = top[top_id]->count();
      Dtype* loss_multiplier = top[top_id]->mutable_cpu_diff();
      caffe_set(count, loss_weight, loss_multiplier);
    }
  }
}

Layer在设计之初无法料想到今天会有如此多各种各样的层,但是这些层只需要继承基类Layer,同时定义好各自个性化的LayerSetUpReshape等函数,就可以将自己纳入到SetUp的搭建流程,并通过Net::Init进一步纳入整个网络的搭建中。

前向传播与反向传播

Layer为所有层定义了前向传播与反向传播的通用接口ForwardBackward,实际上,ForwardBackwardForward_cpuForward_gpuBackward_cpuBackward_gpu包装器,子类需要定义自己的Forward_cpuForward_gpuBackward_cpuBackward_gpu,比如,卷积层前向传播要通过卷积操作,池化层前向传播时要通过池化操作,而不需要重写ForwardBackward。此外,如果子类不定义自己的gpu函数,默认的gpu函数实际调用的是cpu函数,如下面代码所示,所以如果要使用GPU,必须要自己实现Forward_gpuBackward_gpu

public:
    inline Dtype Forward(const vector*>& bottom, 
        const vector*>& top);
    inline void Backward(const vector*>& top,
        const vector& propagate_down,
        const vector*>& bottom);
protected:
    virtual void Forward_cpu(const vector*>& bottom,
        const vector*>& top) = 0;
    virtual void Forward_gpu(const vector*>& bottom,
        const vector*>& top) {
      // LOG(WARNING) << "Using CPU code as backup.";
      return Forward_cpu(bottom, top);
    }
    virtual void Backward_cpu(const vector*>& top,
        const vector& propagate_down,
        const vector*>& bottom) = 0;
    virtual void Backward_gpu(const vector*>& top,
        const vector& propagate_down,
        const vector*>& bottom) {
      // LOG(WARNING) << "Using CPU code as backup.";
      Backward_cpu(top, propagate_down, bottom);
    }

在下面代码中,注意Forward中的loss_weight的来源以及损失的计算。

template 
inline Dtype Layer::Forward(const vector*>& bottom,
    const vector*>& top) {
  Dtype loss = 0;
  Reshape(bottom, top);
  switch (Caffe::mode()) {
  case Caffe::CPU:
    Forward_cpu(bottom, top);
    for (int top_id = 0; top_id < top.size(); ++top_id) {
      if (!this->loss(top_id)) { continue; }
      const int count = top[top_id]->count();
      const Dtype* data = top[top_id]->cpu_data();
      const Dtype* loss_weights = top[top_id]->cpu_diff(); // 在损失函数中的权重
      loss += caffe_cpu_dot(count, data, loss_weights);
    }
    break;
  case Caffe::GPU:
    Forward_gpu(bottom, top);
#ifndef CPU_ONLY
    for (int top_id = 0; top_id < top.size(); ++top_id) {
      if (!this->loss(top_id)) { continue; }
      const int count = top[top_id]->count();
      const Dtype* data = top[top_id]->gpu_data();
      const Dtype* loss_weights = top[top_id]->gpu_diff();
      Dtype blob_loss = 0;
      caffe_gpu_dot(count, data, loss_weights, &blob_loss);
      loss += blob_loss;
    }
#endif
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode.";
  }
  return loss;
}

template 
inline void Layer::Backward(const vector*>& top,
    const vector& propagate_down,
    const vector*>& bottom) {
  switch (Caffe::mode()) {
  case Caffe::CPU:
    Backward_cpu(top, propagate_down, bottom);
    break;
  case Caffe::GPU:
    Backward_gpu(top, propagate_down, bottom);
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode.";
  }
}

其他成员函数

首先是成员变量的setget函数:

virtual inline const char* type() const { return ""; } // return the layer type
inline void SetPhase(Phase p) { phase_ = p;} 
vector > >& blobs() { return blobs_;} 
vector*> GetBlobs(); 
void SetBlobs(const vector*>& weights); 
inline Dtype loss(const int top_index) const; 
inline void set_loss(const int top_index, const Dtype value); 
const LayerParameter& layer_param() const { return layer_param_; } 
inline bool param_propagate_down(const int param_id);
inline void set_param_propagate_down(const int param_id, const bool value);

ToProto将该层的参数设置以及学习到的权重序列化输出。

// Serialize LayerParameter to protocol buffer
template 
void Layer::ToProto(LayerParameter* param, bool write_diff) {
  param->Clear();
  param->CopyFrom(layer_param_);
  param->clear_blobs();
  for (int i = 0; i < blobs_.size(); ++i) {
    blobs_[i]->ToProto(param->add_blobs(), write_diff);
  }
}

下面为供CheckBlobCounts使用的函数,根据层的需要自行定义,默认状态对top和bottom的blob数量不做要求。可见,其实CheckBlobCounts也采用了template method设计思想,只是这个函数没那么重要,按下不表。

virtual inline int ExactNumBottomBlobs() const { return -1; }
virtual inline int MinBottomBlobs() const { return -1; }
virtual inline int MaxBottomBlobs() const { return -1; }
virtual inline int MaxBottomBlobs() const { return -1; }
virtual inline int ExactNumTopBlobs() const { return -1; }
virtual inline int MinTopBlobs() const { return -1; }
virtual inline int MaxTopBlobs() const { return -1; }
virtual inline bool EqualNumBottomTopBlobs() const { return false; }

其他成员函数

/* If this method returns true, Net::Init will create enough "anonymous" top
 * blobs to fulfill the requirement specified by ExactNumTopBlobs() or
 * MinTopBlobs().
 */
virtual inline bool AutoTopBlobs() const { return false; }
/* If AllowForceBackward(i) == false, we will ignore the force_backward
 * setting and backpropagate to blob i only if it needs gradient information
 * (as is done when force_backward == false).
 */
virtual inline bool AllowForceBackward(const int bottom_index) const {
    return true;
  }

以上。

参考

  • Blobs, Layers, and Nets: anatomy of a Caffe model
  • 虚函数与多态

你可能感兴趣的:(Caffe源码理解3:Layer基类与template method设计模式)