单源最短路径

 单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一.最短路径的最优子结构性质

   该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

   假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二.Dijkstra算法

   由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得由V0经过Vi到达与Vi直接相邻的顶点的最短距离dist[j]=min{matrix[V0][j],dist[i]+matrix[i][j]}。根据这种思路,

假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。

1.从V-U中dist[i]值最小的顶点i,将i加入到U中

2.更新与i直接相邻顶点的dist值。(dist[j]=min{matrix[V0][j],dist[i]+matrix[i][j]})

3.直到U=V,停止。

代码模版:

template <class Type>
void Dijkstra(int n,int v,Type dist[],int prev[],Type * * c)
{
    bool s[maxint];
    for(int i=1;i<=n;i++)
    {
        dist[i] = c[v][i];
        s[i] = false;
        if(dist[i] == maxint)
            prev[i] = 0;
        else
            prev[i] = v;
    }
    dist[v] = 0;
    s[v] = true;
    for(int i=1;i<n;i++)
    {
        int temp = maxint;
        int u = v;
        for(int j = 1;j<=n;j++)
        {
            if(!(s[j]) && (dist[j] < temp))
            {
                u = j;
                temp = dist[j];
            }
            s[u] = true;//这个是放哪的?
        }
        for(j =1;j<=n;j++)
        {
            if(!(s[j]) && (c[u][j]<maxint))
            {
                Type newdist = dist[u] + c[u][j];
                if(newdist < dist[j])
                {
                    dist[j] = newdist;
                    prev[j] = u;
                }
            }
        }
    }
}

你可能感兴趣的:(最短路径)