java数据结构(四)

关于树的基本概念可以查看此篇文章树、堆、集合

1、一般树的实现:

树结构可以由递归实现,也可以由链表实现:
链表实现的单个节点的表示方法:

class TreeNode{
    Object element;  //节点的值
    TreeNode firstChild; //该节点的第一个子节点
    TreeNode nextSibling; //下一个兄弟节点
}

树的遍历:分为前序遍历、后续遍历,二叉树还有一种特殊的遍历方法(中序遍历);
前序遍历:及对节点的处理,先于其子节点进行,其时间复杂度为O(n);
后序遍历:及对节点的处理,晚于其子节点进行,其时间复杂度为O(n);
[图片上传失败...(image-754579-1509972359621)]

前序遍历为:A-B-D-#-#-#-C-E-#-#-#

后序遍历为:#-#-D-#-B-#-#-E-#-C-A

2、二叉树的实现:

二叉树是一颗树,其每个节点都不能有多于两个的儿子;

其单个节点为:

    private static class BinaryNode{
        T element;
        BinaryNode leftBinaryNode;
        BinaryNode rightBinaryNode;
        
        BinaryNode(T element){
            this.element=element;
        }

        public BinaryNode(T element, BinaryNode leftBinaryNode, BinaryNode rightBinaryNode) {
            this.element = element;
            this.leftBinaryNode = leftBinaryNode;
            this.rightBinaryNode = rightBinaryNode;
        }
        
    }

二叉搜索树的实现:


package tree;

import com.sun.jmx.remote.internal.ArrayQueue;

import java.nio.BufferUnderflowException;
import java.util.Queue;

public class myBinaryTree> {
    private BinaryNode root;
    public myBinaryTree(){
        root=null;
    }
    public boolean isEmpty(){
        return root==null;
    }
    public void makeEmpty(){
        root=null;
    }
    public boolean contains(T item){
        return contains(item,root);
    }

    private boolean contains(T item,BinaryNode t){
        if(t==null){
            return false;
        }
        int compareValue=item.compareTo(t.element);
        if(compareValue<0){
            return contains(item,t.leftBinaryNode);
        }
        else if(compareValue>0){
            return contains(item,t.rightBinaryNode);
        }
        else {
            return true;
        }
    }


    public T findMin(){
        if(isEmpty())
            throw new BufferUnderflowException();
        return findMin(root).element;
    }
    private BinaryNode findMin(BinaryNode t){
        if(t==null){
            return null;
        }
        while (t.leftBinaryNode!=null){
            t=t.leftBinaryNode;
        }
        return t;
    }


    public T findMax(){
        if(isEmpty())
            throw new BufferUnderflowException();
        return findMax(root).element;
    }
    private BinaryNode findMax(BinaryNode t){
        if(t==null){
            return null;
        }
        while (t.rightBinaryNode!=null){
            t=t.rightBinaryNode;
        }
        return t;
    }

    public void insert(T item){
        root=insert(item,root);
    }
    private BinaryNode insert(T item,BinaryNode t){
        if(t==null){
            return new BinaryNode(item,null,null);
        }
        int compareValue=item.compareTo(t.element);
        if(compareValue<0){
            t.leftBinaryNode=insert(item,t.leftBinaryNode);
        }
        else if(compareValue>0){
            t.rightBinaryNode=insert(item,t.rightBinaryNode);
        }
        else{
            ;
        }

        return t;
    }

    public int height(){
        if(isEmpty()){
            return 0;
        }
        else
            return height(root);
    }
    private int height(BinaryNode t){
        if(t==null){
            return 0;
        }
        else
            return 1+Math.max(height(t.rightBinaryNode),height(t.leftBinaryNode));
    }


    public void printTreeNodeLast(){ //后序遍历
        if(isEmpty()){
            System.out.println("Tree is empty");
        }
        else {
            printTreeNodeLast(root);
        }
    }
    private void printTreeNodeLast(BinaryNode t){
        if (t!=null){
            printTreeNodeLast(t.leftBinaryNode);
            printTreeNodeLast(t.rightBinaryNode);
            System.out.println(t.element);
        }
    }


    public void printTreeNodeFirst(){ //先序遍历
        if(isEmpty()){
            System.out.println("Tree is empty");
        }
        else {
            printTreeNodeFirst(root);
        }
    }
    private void printTreeNodeFirst(BinaryNode t){
        if (t!=null){
            System.out.println(t.element);
            printTreeNodeFirst(t.leftBinaryNode);
            printTreeNodeFirst(t.rightBinaryNode);
        }
    }

    public void printTreeNodeMedu(){ //中序遍历
        if(isEmpty()){
            System.out.println("Tree is empty");
        }
        else {
            printTreeNodeMedu(root);
        }
    }
    private void printTreeNodeMedu(BinaryNode t){
        if (t!=null){
            printTreeNodeMedu(t.leftBinaryNode);
            System.out.print(t.element);
            printTreeNodeMedu(t.rightBinaryNode);
        }
    }

    public void printTree(){ //层序遍历
        if(isEmpty()){
            System.out.println("Tree is empty");
        }
        else {
            printTree(root);
        }
    }
    private void printTree(BinaryNode t){
        ArrayQueue> arrayQueue=new ArrayQueue<>(height());
        if(t==null){
            System.out.println("Tree is empty");
        }
        arrayQueue.add(t);
        while (!arrayQueue.isEmpty()){
            BinaryNode binaryNode=arrayQueue.remove(0);
            System.out.println(binaryNode.element);
            if(binaryNode.leftBinaryNode!=null){
                arrayQueue.add(binaryNode.leftBinaryNode);
            }
            if(binaryNode.rightBinaryNode!=null){
                arrayQueue.add(binaryNode.rightBinaryNode);
            }
        }
    }

    public void remove(T item){
        root=remove(item,root);
    }
    private BinaryNode remove(T item,BinaryNode t){
       if(t==null){
           return null;
       }
       int comparaValue=item.compareTo(t.element);
       if(comparaValue>0){
           t.rightBinaryNode=remove(item,t.rightBinaryNode);
       }
       else if(comparaValue<0) {
           t.leftBinaryNode=remove(item,t.leftBinaryNode);
       }
       else {
           if(t.rightBinaryNode!=null&&t.leftBinaryNode!=null){
               t.element=findMin(t.rightBinaryNode).element;
               t.rightBinaryNode=remove(t.element,t.rightBinaryNode);
           }
           else {
               t=(t.leftBinaryNode!=null)?t.leftBinaryNode:t.rightBinaryNode;
           }
       }
        return t;
    }

    private static class BinaryNode{
        T element;
        BinaryNode leftBinaryNode;
        BinaryNode rightBinaryNode;

        BinaryNode(T element){
            this.element=element;
        }

        public BinaryNode(T element, BinaryNode leftBinaryNode, BinaryNode rightBinaryNode) {
            this.element = element;
            this.leftBinaryNode = leftBinaryNode;
            this.rightBinaryNode = rightBinaryNode;
        }

    }
}

3、AVL树
带有自平衡调整的二叉查找树,其要求每个节点的左右子节点的高度差,相差不超过1;


package tree;

import com.sun.org.apache.xerces.internal.impl.xpath.regex.Match;

import java.nio.BufferUnderflowException;

public class myAvlTree> {
    private static final int ALLOWED_HEIGHT=1;
    private AvlNode root;

    public myAvlTree(){
        root=null;
    }

    public boolean isEmpty(){
        return root==null;
    }
    public void insert(T item){
        root=insert(item,root);
    }


    public T findMin(){
        if(isEmpty())
            throw new BufferUnderflowException();
        return findMin(root).element;
    }
    private AvlNode findMin(AvlNode t){
        if(t==null){
            return null;
        }
        while (t.left!=null){
            t=t.left;
        }
        return t;
    }
    private AvlNode insert(T item,AvlNode t){
        if(t==null){
            return new AvlNode(item,null,null);
        }
        int comparaValue=item.compareTo(t.element);
        if(comparaValue>0){
            t.right=insert(item,t.right);
        }
        else if(comparaValue<0){
            t.left=insert(item,t.left);
        }
        else
            ;
        return balance(t);
    }

    public void remove(T x){
        if(isEmpty()){
            System.out.println("tree is empty");
            throw new BufferUnderflowException();
        }
        remove(x,root);
    }
    private AvlNode remove(T x,AvlNode t){
        if(t==null){
            return null;
        }
        int comparaVaule=x.compareTo(t.element);
        if(comparaVaule>0){
            t.right=remove(x,t.right);
        }
        else if(comparaVaule<0){
            t.left=remove(x,t.left);
        }
        else if(t.left!=null&&t.right!=null){
            t.element=findMin(t.right).element;
            t.right=remove(t.element,t.left);
        }
        else {
            t=(t.left!=null)?t.left:t.right;
        }
        return t;
    }
    private AvlNode balance(AvlNode t){
        if(t==null){
            return t;
        }
        if(height(t.left)-height(t.right)>ALLOWED_HEIGHT){
            if(height(t.left.left)>=height(t.left.right)){
                t=rotateWithLeftChild(t);
            }
            else{
                t=doubleWithLeftChild(t);
            }
        }
        else if(height(t.right)-height(t.left)>ALLOWED_HEIGHT){
            if(height(t.right.right)>=height(t.right.left)){
                t=rotateWithRightChild(t);
            }
            else {
                t=doubleWithRightChild(t);
            }
        }
        t.height=Math.max(height(t.left),height(t.right))+1;
        return t;
    }
    private AvlNode rotateWithLeftChild(AvlNode k2){
        AvlNode k1=k2.left;
        k2.left=k1.right;
        k1.right=k2;
        k2.height= Math.max(height(k2.left),height(k2.right))+1;
        k1.height=Math.max(height(k1.left),k2.height)+1;
        return k1;
    }
    private AvlNode doubleWithLeftChild(AvlNode k2){
        k2.left=rotateWithRightChild(k2.left);
        return rotateWithLeftChild(k2);
    }
    private AvlNode rotateWithRightChild(AvlNode k1){
        AvlNode k2=k1.right;
        k1.right=k2.left;
        k2.left=k1;
        k1.height=Math.max(height(k1.right),k1.height);
        k2.height=Math.max(k1.height,height(k2.right))+1;
        return k2;
    }
    private AvlNode doubleWithRightChild(AvlNode k2){
        k2.right=rotateWithLeftChild(k2.left);
        return rotateWithRightChild(k2);
    }


    private int height(AvlNode t){ //计算AVL树的高度;
        return t==null?-1:t.height;
    }

    public void printTree(){ //后序遍历
        if(isEmpty()){
            System.out.println("Tree is empty");
        }
        else {
            printTree(root);
        }
    }
    private void printTree(AvlNode t){
        if (t!=null){
            printTree(t.left);
            printTree(t.right);
            System.out.println(t.element);
        }
    }

    public void printTreelast(){ //先序遍历
        if(isEmpty()){
            System.out.println("Tree is empty");
        }
        else {
            printTreelast(root);
        }
    }
    private void printTreelast(AvlNode t){
        if (t!=null){
            System.out.println(t.element);
            printTreelast(t.left);
            printTreelast(t.right);

        }
    }


    public void printTreemd(){ //中序遍历
        if(isEmpty()){
            System.out.println("Tree is empty");
        }
        else {
            printTreemd(root);
        }
    }
    private void printTreemd(AvlNode t){
        if (t!=null){
            printTreemd(t.left);
            System.out.println(t.element);
            printTreemd(t.right);

        }
    }

    private static class AvlNode{
        T element;
        AvlNode left;
        AvlNode right;
        int height; //height
        AvlNode(T element){
            this.element=element;
        }
        public AvlNode(T element, AvlNode left, AvlNode right) {
            this.element = element;
            this.left = left;
            this.right = right;
            height=0;
        }

    }
}


 public static void main(String[] args){
        myAvlTree myAvlTree=new myAvlTree<>();
        Integer[] integer={10,3,5,9,8,7,0,4};
        for(Integer ints:integer){
            myAvlTree.insert(ints);
        }
        System.out.println("中序");
        myAvlTree.printTreemd();
    }
    
    
中序
0
3
4
5
7
8
9
10

你可能感兴趣的:(java数据结构(四))