利用Python——四步掌握机器学习

在Python中学习机器学习的四个步骤:

1、首先你要使用书籍、课程、视频来学习 Python 的基础知识

2、然后你必需掌握不同的模块,比如 Pandas、Numpy、Matplotlib、NLP (自然语言处理),来处理、清理、绘图和理解数据。

3、接着你必需能够从网页抓取数据,无论是通过网站API,还是网页抓取模块Beautiful Soap。通过网页抓取可以收集数据,应用于机器学习算法。

4、最后一步,你必需学习机器学习工具,比如 Scikit-Learn,或者在抓取的数据中执行机器学习算法(ML-algorithm)。

决策树

随机森林算法

逻辑回归

SVM

朴素贝叶斯

K最近邻算法

K均值算法

Adaboost 算法

神经网络

马尔可夫

http://python.jobbole.com/84326/

=========================================================

Scikit-learn的六大功能:

Scikit-learn的基本功能主要被分为六大部分:分类,回归,聚类,数据降维,模型选择和数据预处理。

分类是指识别给定对象的所属类别,属于监督学习的范畴,最常见的应用场景包括垃圾邮件检测和图像识别等。目前Scikit-learn已经实现的算法包括:支持向量机(SVM),最近邻,逻辑回归,随机森林,决策树以及多层感知器(MLP)神经网络等等。

回归是指预测与给定对象相关联的连续值属性,最常见的应用场景包括预测药物反应和预测股票价格等。目前Scikit-learn已经实现的算法包括:支持向量回归(SVR),脊回归,Lasso回归,弹性网络(Elastic Net),最小角回归(LARS ),贝叶斯回归,以及各种不同的鲁棒回归算法等。可以看到,这里实现的回归算法几乎涵盖了所有开发者的需求范围,而且更重要的是,Scikit-learn还针对每种算法都提供了简单明了的用例参考。

聚类是指自动识别具有相似属性的给定对象,并将其分组为集合,属于无监督学习的范畴,最常见的应用场景包括顾客细分和试验结果分组。目前Scikit-learn已经实现的算法包括:K-均值聚类,谱聚类,均值偏移,分层聚类,DBSCAN聚类等。

数据降维是指使用主成分分析(PCA)、非负矩阵分解(NMF)或特征选择等降维技术来减少要考虑的随机变量的个数,其主要应用场景包括可视化处理和效率提升。

模型选择是指对于给定参数和模型的比较、验证和选择,其主要目的是通过参数调整来提升精度。目前Scikit-learn实现的模块包括:格点搜索,交叉验证和各种针对预测误差评估的度量函数。

数据预处理是指数据的特征提取和归一化,是机器学习过程中的第一个也是最重要的一个环节。这里归一化是指将输入数据转换为具有零均值和单位权方差的新变量,但因为大多数时候都做不到精确等于零,因此会设置一个可接受的范围,一般都要求落在0-1之间。而特征提取是指将文本或图像数据转换为可用于机器学习的数字变量。

你可能感兴趣的:(利用Python——四步掌握机器学习)