consistent hashing算法早在1997年就在论文Consistent hashing and random trees中被提出,目前在cache系统中应用越来越广泛;
基本场景
比如你有N个cache服务器(后面简称node),那么如何将一个数据集合映射到N个node上呢,你很可能会采用类似下面的通用方法计算data的hash值,然后映射到相应的node上;
hash(data)%N
问题的引入:
1、一个cache服务器node0 宕掉了(在实际应用中必须要考虑这种情况),这样所有映射到node0的数据都会失效,怎么办,需要把node0从服务器列表中移除,这时候cache是N-1台,映射公式变成了hash(data)%(N-1);
2、由于访问加重,需要添加node,这时候cache是N+1台,映射公式变成了hash(data)%(N+1);
1和2意味着什么?这意味着突然之间几乎所有的映射关系都失效了。对于服务器而言,这是一场灾难,洪水般的访问都会直接冲向后台服务器;
再来考虑第三个问题,由于硬件能力越来越强,你可能想让后面添加的节点多做点活,显然上面的hash算法也做不到。
hash算法和单调性
Hash算法的一个衡量指标是单调性(Monotonicity),定义如下:
单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。
consistent hashing是一种hash算法,简单的说,在移除/添加一个node时,它能够尽可能小的改变已存在key映射关系,尽可能的满足单调性的要求。
下面就来按照5个步骤简单讲讲consistent hashing算法的基本原理。
环形Hash空间
按照常用的hash算法来将对应的key哈希到一个具有2^32次方个桶的空间中,即0~(2^32)-1的数字空间中。现在我们可以将这些数字头尾相连,想象成一个闭合的环形。如下图
把数据映射到hash空间
现在我们将object1、object2、object3、object4四个数据对象通过特定的Hash函数计算出对应的key值,然后散列到Hash环上。如下图:
Hash(object1) = key1;
Hash(object2) = key2;
Hash(object3) = key3;
Hash(object4) = key4;
把node映射到hash空间
在采用一致性哈希算法的分布式集群中将新的机器加入,其原理是通过使用与对象存储一样的Hash算法将机器也映射到环中(一般情况下对机器的hash计算是采用机器的IP或者机器唯一的别名作为输入值),然后以顺时针的方向计算,将所有对象存储到离自己最近的机器中。
假设现在有NODE1,NODE2,NODE3三台机器,通过Hash算法得到对应的KEY值,映射到环中,其示意图如下:
Hash(NODE1) = KEY1;(这里是大写的KEY,数据是小写的key)
Hash(NODE2) = KEY2;
Hash(NODE3) = KEY3;
把data映射到node
现在node和data都已经通过同一个hash算法映射到hash数值空间中了,接下来要考虑的就是如何将数据映射到node上面了。
在这个环形空间中,如果沿着顺时针方向从data的key值出发,直到遇见一个node,那么就将该对象存储在这个node上,因为data和node的hash值是固定的,因此这个node必然是唯一和确定的。
node的变动
前面讲过,通过hash然后求余的方法带来的最大问题就在于不能满足单调性,当node有变动时,所有的data映射都会失效,进而对后台服务器造成巨大的冲击,现在就来分析分析consistent hashing算法。
移除node
以上面的分布为例,如果NODE2出现故障被删除了,那么按照顺时针迁移的方法,object3将会被迁移到NODE3中,这样仅仅是object3的映射位置发生了变化,其它的对象没有任何的改动。如下图:
添加node
如果往集群中添加一个新的节点NODE4,通过对应的哈希算法得到KEY4,并映射到环中,如下图:
通过按顺时针迁移的规则,那么object2被迁移到了NODE4中,其它对象还保持这原有的存储位置。通过对节点的添加和删除的分析,一致性哈希算法在保持了单调性的同时,还是数据的迁移达到了最小,这样的算法对分布式集群来说是非常合适的,避免了大量数据迁移,减小了服务器的的压力。
平衡性
根据上面的图解分析,一致性哈希算法满足了单调性和负载均衡的特性以及一般hash算法的分散性,但这还并不能当做其被广泛应用的原由,因为还缺少了平衡性。下面将分析一致性哈希算法是如何满足平衡性的。hash算法是不保证平衡的,如上面只部署了NODE1和NODE3的情况(NODE2被删除的图),object1存储到了NODE1中,而object2、object3、object4都存储到了NODE3中,这样就照成了非常不平衡的状态。在一致性哈希算法中,为了尽可能的满足平衡性,其引入了虚拟节点。
“虚拟节点”(virtual node)是实际节点(机器)在hash空间的复制品(replica),一实际个节点(机器)对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在hash空间中以hash值排列。
以上面只部署了NODE1和NODE3的情况(NODE2被删除的图)为例,之前的对象在机器上的分布很不均衡,现在我们以2个副本(复制个数)为例,这样整个hash环中就存在了4个虚拟节点,最后对象映射的关系图如下:
根据上图可知对象的映射关系:object1->NODE1-1,object2->NODE1-2,object3->NODE3-2,object4->NODE3-1。通过虚拟节点的引入,对象的分布就比较均衡了。那么在实际操作中,正真的对象查询是如何工作的呢?对象从hash到虚拟节点到实际节点的转换如下图:
“虚拟节点”的hash计算可以采用对应节点的IP地址加数字后缀的方式。例如假设NODE1的IP地址为192.168.1.100。引入“虚拟节点”前,计算cache A的hash值:
Hash(“192.168.1.100”);
引入“虚拟节点”后,计算“虚拟节”点NODE1-1和NODE1-2的hash值:
Hash(“192.168.1.100#1”); // NODE1-1
Hash(“192.168.1.100#2”); // NODE1-2
总结:
一致性hash算法解决的问题:节点增加或移除对原有数据分布的最小冲击,即使用原来的查询或插入方法都不会有问题,顶多是查询不到。
java算法实现:
http://blog.csdn.net/wuhuan_wp/article/details/7010071
一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:
1、平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。
2、单调性(Monotonicity):单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。
3、分散性(Spread):在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。
4、负载(Load):负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同 的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。