本节是对上节的补充
import tempfile
import tensorflow as tf
# 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据。
train_files = tf.train.match_filenames_once("output.tfrecords")
test_files = tf.train.match_filenames_once("output_test.tfrecords")
def parser(record):
features = tf.parse_single_example(
record,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'pixels': tf.FixedLenFeature([], tf.int64),
'label': tf.FixedLenFeature([], tf.int64)
}
)
decoded_images = tf.decode_raw(features['image_raw'], tf.uint8)
retyped_images = tf.cast(decoded_images, tf.float32)
images = tf.reshape(retyped_images, [784])
labels = tf.cast(features['label'], tf.int32)
# pixels = tf.cast(features['pixels'],tf.int32)
return images, labels
image_size = 299 # 定义神经网络输入层图片的大小。
batch_size = 100 # 定义组合数据batch的大小。
shuffle_buffer = 10000 # 定义随机打乱数据时buffer的大小。
# 定义读取训练数据的数据集。
dataset = tf.data.TFRecordDataset(train_files)
dataset = dataset.map(parser) # 哈哈哈,这里看懂了
# 对数据进行shuffle和batching操作。这里省略了对图像做随机调整的预处理步骤。
dataset = dataset.shuffle(shuffle_buffer).batch(batch_size)
# 重复NUM_EPOCHS个epoch。
NUM_EPOCHS = 10
dataset = dataset.repeat(NUM_EPOCHS)
# 定义数据集迭代器。
iterator = dataset.make_initializable_iterator()
image_batch, label_batch = iterator.get_next()
# 定义神经网络的结构以及优化过程。这里与7.3.4小节相同。
def inference(input_tensor, weights1, biases1, weights2, biases2):
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
y = inference(image_batch, weights1, biases1, weights2, biases2)
# 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=label_batch)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
# 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion
# 优化损失函数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
# 下面是测试用的
# 定义测试用的Dataset。
test_dataset = tf.data.TFRecordDataset(test_files)
test_dataset = test_dataset.map(parser)
test_dataset = test_dataset.batch(batch_size)
# 定义测试数据上的迭代器。
test_iterator = test_dataset.make_initializable_iterator()
test_image_batch, test_label_batch = test_iterator.get_next()
# 定义测试数据上的预测结果。
test_logit = inference(test_image_batch, weights1, biases1, weights2, biases2)
predictions = tf.argmax(test_logit, axis=-1, output_type=tf.int32)
# 声明会话并运行神经网络的优化过程。
with tf.Session() as sess:
# 初始化变量。
sess.run((tf.global_variables_initializer(),
tf.local_variables_initializer())) # tf.local_variables_initializer()返回一个初始化所有局部变量的操作(Op)
# 初始化训练数据的迭代器。
sess.run(iterator.initializer)
# 循环进行训练,直到数据集完成输入、抛出OutOfRangeError错误。
while True:
try:
sess.run(train_step)
except tf.errors.OutOfRangeError:
break
test_results = []
test_labels = []
# 初始化测试数据的迭代器。
sess.run(test_iterator.initializer)
# 获取预测结果。
while True:
try:
pred, label = sess.run([predictions, test_label_batch])
test_results.extend(pred)
test_labels.extend(label)
except tf.errors.OutOfRangeError:
break
# 计算准确率
correct = [float(y == y_) for (y, y_) in zip(test_results, test_labels)]
accuracy = sum(correct) / len(correct)
print("Test accuracy is:", accuracy)
运行结果是: