- DeepSeek的训练与优化流程
程序猿000001号
DeepSeek训练优化
DeepSeek的训练与优化流程一、数据工程体系1.多模态数据融合处理动态数据湖架构:实时摄入互联网文本、科学论文、专利文献、传感器数据等20+数据源日均处理原始数据量达1.2PB,支持200+文件格式自动解析智能清洗流水线:基于大模型的语义去重算法,重复数据识别准确率99.6%创新应用对抗网络生成噪声数据,增强模型鲁棒性专利级数据质量评估体系(DQAS3.0)包含87个质量维度2.知识增强处理结
- 数据仓库和数据湖 数据仓库和数据库
qq_25467441
数据仓库数据库
数据仓库和数据湖是两种不同的数据存储解决方案,它们在设计、用途和数据管理方式上有着显著的区别。以下是数据仓库和数据湖的主要区别:1.数据结构:•数据仓库:通常存储结构化数据,这些数据经过清洗、转换和加载(ETL)过程,以确保数据的一致性和准确性。数据仓库中的数据通常是预定义模式的,便于进行快速查询和分析。•数据湖:可以存储结构化、半结构化和非结构化数据。数据湖不需要预定义的模式,数据可以以其原始格
- 数据仓库、数据湖和数据湖仓
阿湯哥
数据仓库spark大数据
数据仓库、数据湖和数据湖仓是三种常见的数据存储和管理技术,各自有不同的特点和适用场景。以下是它们的详细比较:1.数据仓库(DataWarehouse)定义:用于存储结构化数据,经过清洗、转换和建模,支持复杂的查询和分析。特点:结构化数据:主要处理关系型数据。预定义模式:数据在加载前需要定义模式(Schema-on-Write)。高性能查询:优化用于复杂查询和报表生成。数据治理:提供强大的数据治理和
- 数据仓库与数据湖的协同工作:智慧数据管理的双引擎
Echo_Wish
实战高阶大数据人工智能科技大数据
数据仓库与数据湖的协同工作:智慧数据管理的双引擎引言在数据驱动的今天,企业和组织收集和存储的数据量正以惊人的速度增长。如何高效管理和利用这些数据,成为了决策者和技术专家的共同难题。为了解决这一问题,数据仓库(DataWarehouse)和数据湖(DataLake)这两种技术应运而生,分别在不同的应用场景中发挥着重要作用。然而,随着数据管理需求的日益复杂,单一的数据仓库或数据湖并无法完全满足现代企业
- Apache Iceberg 与 Apache Hudi:数据湖领域的双雄对决
夜里慢慢行456
大数据大数据
在数据存储和处理不断发展的领域中,数据湖仓的概念已经崭露头角,成为了一种变革性的力量。数据湖仓结合了数据仓库和数据湖的最佳元素,提供了一个统一的平台,支持数据科学、商业智能、人工智能/机器学习以及临时报告等多种关键功能。这种创新的方法不仅促进了实时分析,还显著降低了平台成本,增强了数据治理,并加速了用例的实现。数据存储和处理的演变催生了被称为数据湖仓的现代分析平台。这些平台旨在解决传统架构的局限性
- Doris实战——工商信息查询平台的湖仓一体建设
吵吵叭火
大数据大数据数据仓库
目录前言一、架构1.0:传统Lambda架构二、OLAP引擎调研三、架构2.0:数据服务层AllinApacheDoris四、架构3.0:基于DorisMulti-Catalog的湖仓一体架构五、实践经验5.1引入Merge-on-Write,百亿级单表查询提速近三倍5.2部分列数据更新,数据开发效率提升100%5.3丰富Join的优化手段,整体查询速度最高提升近四倍5.4LightSchemaC
- Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
大数据flink阿里云数据分析
摘要:本文整理自FlinkForwardAsia2024大会中阿里云DataWorks数据集成团队陈吉通的分享,主要分享FlinkCDC在阿里云DataWorks数据集成入湖场景的应用实践。内容分为以下四个部分:1.阿里云DataWorks数据集成介绍2.DataWorks数据集成入湖解决方案的架构和原理3.DataWorks数据集成入湖场景的产品化案例分享4.未来规划一、阿里云DataWorks
- 数据湖和数据仓库的区别?
春风不会绿大地
大数据数据仓库
简介数据湖这个概念和数据仓库这两个概念一直搞不清楚,之前感觉区别就是数据湖是数据仓库的父集。数据湖是个伪命题,平时生活中也用不到,然后今天听了我的一个师哥的讲解,然后简单总结下。常见的问题1数据湖和数据仓库的区别?相似点:都可以处理海量数据,都是为了得到有价值的数据。不同点:架构上,数仓基本要求符合DDL定义的结构,数据湖则湖纳百川。数据上,数仓为结构化数据设计,数据湖,湖纳百川。模块上,数仓一般
- 22_设计方案(第三章-技术路线)
珞圻-Health
信息化项目验收文档体系政务大数据人工智能
3.7技术路线3.7.1开发及设计工具(1)开发工具IntellijIDEA2020、visualstudiocode1.51、GIT,mvn、jekins、Jemeter、LoadRunner、Sonar。(2)设计工具数据库设计工具:Powerdesigner。接口设计工具:YAPI。原型设计工具:Axure、墨刀、蓝湖。3.7.2后台框架3.7.2.1基础框架系统采用以微服务的思想,拆分冗余
- paimon实战 --核心原理和Flink应用进阶
阿华田512
Paimon学习必读系列Flink学习必读系列flink大数据flink读写paimon数据湖
简介Flink社区希望能够将Flink的Streaming实时计算能力和Lakehouse新架构优势进一步结合,推出新一代的StreamingLakehouse技术,促进数据在数据湖上真正实时流动起来,并为用户提供实时离线一体化的开发体验。Flink社区内部孵化了FlinkTableStore(简称FTS)子项目,一个真正面向Streaming以及Realtime的数据湖存储项目。2023年3月1
- 新型大数据架构之湖仓一体(Lakehouse)架构特性说明——Lakehouse 架构(一)
m0_74825238
面试学习路线阿里巴巴大数据架构
文章目录为什么需要新的数据架构?湖仓一体(Lakehouse)——新的大数据架构模式同时具备数仓与数据湖的优点湖仓一体架构存储层计算层湖仓一体特性单一存储拥有数据仓库的查询性能存算分离开放式架构支持各种数据源类型支持各种使用方式架构简单数据共享schema过滤和推演时间回溯为什么需要新的数据架构?数据仓库和数据湖一直是实现数据平台最流行的架构,然而,过去几年,社区一直在努力利用不同的数据架构方法来
- 关于阿里云DataWorks的20道面试题
编织幻境的妖
阿里云云计算
1.请简要介绍阿里云DataWorks的基本概念和主要功能。阿里云DataWorks是一个全链路的大数据开发治理平台,其主要功能包括数据集成、数据建模与开发、数据地图、数据质量和数据服务等。DataWorks的基本概念围绕其作为一个大数据开发和治理的平台,它整合了多种大数据引擎如MaxCompute、Hologres、EMR、AnalyticDB、CDP等,旨在为数据仓库、数据湖及湖仓一体化解决方
- 【Apache Paimon】-- 2 -- 核心特性 (0.9.0)
oo寻梦in记
ApachePaimon大数据Apachepaimon数据湖
目录1、实时更新1.1、实时大批量更新1.2、支持定义合并引擎1.3、支持定义更新日志生成器2、海量数据追加处理2.1、appendtable2.2、快速查询3、数据湖功能(类比:hudi、iceberg、delta)3.1、支持ACID事务3.2、支持Timetravel(时间旅行)3.3、支持SchemaEvolution(元数据变更)3.4、可扩展元数据:存储PB级大规模数据集和存储大量分区
- 【计算机网络】【湖科大MOOC】传输层概述 端口号用法 复用与分用 UDP与TCP的对比
liangjingxin1210
计算机网络udp网络传输端口扫描tcpip
目录运输层1.概述1.2传输层的任务1.3工作过程1.4运输协议2.运输层端口号、复用与分用的概念2.1端口号2.1.1为什么要用端口号?2.1.2运输层使用端口号来区分应用层的不同应用进程2.1.3端口号举例2.2发送方的复用和接收方的分用2.2.1TCP/IP体系的常用的应用层协议所使用的运输层端口号3.UDP和TCP的对比3.1无连接&面向连接3.2单播、多播、广播3.3对应用报文的处理3.
- 关于wpf布局的理解
丹青城
Asp.netwpfwpfc#
之前很少做客户端的东西,最近使用wpf做一个监控界面,看着美工给的高大上的效果图,想要根据效果图实现布局效果,还是需要一些技巧和工具的。这里总结下如何根据美工小姐姐的效果图来一步步的在wpf的页面上来实现效果。前期准备推荐一个好用的工具Markman,这里可以获取各个区域的高度、坐标、颜色等信息,方便后面进行布局的如果效果图是蓝湖的,那就不需要再使用这样的工具了页面布局控件ViewboxViewB
- Hudi VS Doris 使用分析
sunxunyong
数据库
数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工。Hudi(HadoopUpsertsDeletesandIncrementals)定位-面向数据湖的增量写入、更新与删除技术。Hudi通过表格式管理的能力,为数据湖提供ACID事务、时间旅行查询等特性。场景-近实时抽数(大规模数据更
- 2天的Flink Forward Asia 有什么值得关注的点
本文于12.8首发于公众号“狗哥琐话”。系是B站视频的文字稿。有兴趣的同学可以看B站的视频,搜索“抽象狗哥”。11月29号和30号,FlinkForwardAsia在上海举行。这篇文章给大家搞个省流版,聊聊有什么值得关注的点。Flink近2年的一个大动作就是把Flink的场景从流式计算到流式湖仓,主要是依托于ApachePaimon来建设的。流式湖仓和实时数仓是两回事啊。新鲜度上有很大的差别,前者
- (王道考研计算机网络)第四章网络层-第三节1:IP数据报格式及分片
快乐江湖
tcp/ip网络网络协议
指导获取:密码7281专栏目录首页:【专栏必读】王道考研408计算机网络+湖科大教书匠计算机网络+网络编程万字笔记、题目题型总结、注意事项、目录导航和思维导图王道考研408计算机组成原理万字笔记王道考研408数据结构+计算机算法设计与分析万字笔记王道考研408操作系统+Linux系统编程万字笔记文章目录一:IP数据报格式二:IP数据报分片一
- 【专栏必读】考研湖科大教书匠计算机网络笔记导航
快乐江湖
考研网络计算机网络
文章目录第一章:概述第一节:因特网概述第二节:三种交换方式第三节:计算机网络定义和分类第四节:计算机网络性能指标第五节:计算机网络体系结构第二章:物理层第一节:物理层基本概念第二节:传输媒体第三节:传输方式第四节:编码与调制第五节:信道的极限容量第三章:数据链路层第一节:数据链路层概述第二节:封装成帧第三节:差错控制第四节:可靠传输第五节:点对点协议PPP第六节:媒体接入控制第七节:MAC地址、I
- 实时洞察41TB数据,TrafficPeak提供卓越足球观赛体验
Akamai中国
云计算大数据人工智能网络分布式云计算云原生云平台
无论任何体育赛事,在重要比赛日当天,第一时间解决问题和潜在隐患,这样的能力对于确保赛事成功至关重要。由流式数据湖公司Hydrolix提供支持,Akamai运营的可观测性管理服务TrafficPeak,帮助媒体客户以实时的方式对重要数据进行可视化呈现,从而在各个地区平衡流量,为全球观众交付了流畅、可靠的观赛体验。业务挑战对于Akamai来说,大型体育赛事(尤其是一年一度的大型足球赛)往往是一年中最重
- 揭秘 Fluss 架构组件
大圣数据星球
大数据Flink设计模式
这是Fluss系列的第四篇文章了,我们先回顾一下前面三篇文章主要说了哪些内容。Fluss部署,带领大家部署Fluss环境,体验一下Fluss的功能Fluss整合数据湖的操作,体验Fluss与数据湖的结合讲解了Fluss、Kafka、Paimon之间的区别和联系前面三篇文章可以让大家上手玩起来Fluss这个框架,并说明了它与Kafka、Paimon数据湖的关系,接下来的文章就深入Fluss细节来说一
- Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码
weixin_30777913
音视频语言模型大数据人工智能
ApacheIceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照机制、并发读写能力以及模式演进等特性,使得它能够高效地处理海量数据,并且保证数据的一致性和可用性。特别是在特征工程和模型训练方面,I
- 我的创作纪念日
蓝皮怪
程序人生生活
机缘接触和鲸社区,并且通过和鲸社区写了许多简单的项目,然后考虑可以在更多的平台介绍自己,于是在CSDN进行创作。在这个数据分析领域接触了许多新朋友。被部分读者认可,为我提供了源源不断的动力。收获全网获得了2000+粉丝。在机器学习领域、统计方法上学到了许多东西。认识了来自五湖四海的朋友,有10年数分的大佬,还有许多在校学生。日常在准备考研、工作的情况下,争取保证周更。先把工作弄完,抽空学习考研的内
- Apache Doris 3.0核心特性和生产实践解读
王知无(import_bigdata)
apache
上周Doris社区发布了Doris3.0版本,3.0版本被定位成湖仓一体演化路线上的重要里程碑版本。同时Doris官方社区已经更新了3.0版本的文档。3.0新特性很多,我们还是着重讲新特性中哪些是和真正开发息息相关的。哪些是需要你特别需要关注的。存算分离架构从3.0版本开始,Doris开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。存算分离对计算与存储进行解耦,计算节
- DB2-Db2StreamingChangeEventSource
DataLu
DB2-debezium数据库数据库开发大数据开源
提示:Db2StreamingChangeEventSource类主要用于从IBMDb2数据库中读取变更数据捕获(CDC,ChangeDataCapture)信息。CDC是一种技术,允许系统跟踪数据库表中数据的更改,这些更改可以是插入、更新或删除操作。在大数据和实时数据处理场景中,CDC可以用来同步数据到其他系统,比如数据仓库、数据湖或者流处理平台如ApacheKafka。文章目录前言一、核心功能
- Apache Airflow 全面解析
由数入道
人工智能apacheAirflow
1.Airflow的定义与核心定位ApacheAirflow是一个开源的工作流自动化与调度平台,由Airbnb于2014年创建,2016年进入Apache孵化器,2019年成为顶级项目。其核心设计理念是“WorkflowsasCode”,通过编程方式定义、调度和监控复杂的数据流水线(Pipeline),适用于ETL、机器学习模型训练、数据湖管理、报表生成等场景。2.核心概念与架构解析2.1核心组件
- 破解数据模型相似度计算难题:为数据应用清障
秉寒
大数据
引言在数字化浪潮下,数据仓库和数据湖已成为企业数据管理的核心基础设施。然而,随着它们在公司运营中服役时间的增长,一个棘手的问题逐渐浮现:相似的数据模型如雨后春笋般涌现,字段属性重复度常常高达80%以上。这不仅造成了数据冗余,还让用户在海量的数据模型中迷失方向,使用体验大打折扣。本文将提出一种计算数据模型相似度的方案,助力企业解决这一难题。问题剖析数据模型的相似性问题,本质上源于企业数据架构缺乏统一
- 大数据平台建设整体架构设计方案
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据AI人工智能大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《大数据平台建设整体架构设计方案》关键词:大数据平台、分布式存储、分布式计算、数据仓库、数据湖、数据安全、数据质量管理、数据治理、数据挖掘、机器学习、图计算、自然语言处理、Hadoop、Spark、Flink、项目规划、运维管理、最佳实践。摘要:本文将深入探讨大数据平台建设整体架构设计方案,从概述与核心概念、技术栈、建设实践、运维管理以及经验展望等多个方面进行详细阐述。通过梳理大数据平台的核心组成
- 企业信息化5:后勤管理系统
mosquito_lover1
制造业企业全业务流程信息化pythonflask开源
前言:随着企业各业务板块在信息化的浪潮中积极转型升级,后勤板块往往成为了一个企业信息化的短板,后勤业务大数据无法融入企业信息化数据湖,进而影响企业整体运营的效率和质量。后勤运营信息化管理对于企业后勤管理的提升、成本控制、信息管理和业务水平的提升都将起到积极促进作用。业务需求:后勤管理系统业务需求报告1.项目概述1.1项目背景随着企业规模的不断扩大,传统的后勤管理方式已无法满足现代企业的管理需求。为
- Apache Doris 2.1.8 版本正式发布
SelectDB技术团队
Doris数据库大数据数据分析数据仓库
亲爱的社区小伙伴们,ApacheDoris2.1.8版本已于2025年01月24日正式发布。该版本持续在湖仓一体、异步物化视图、查询优化器与执行引擎、存储管理等方面进行改进提升与问题修复,进一步加强系统的性能和稳定性,欢迎大家下载体验。立即下载:https://doris.apache.org/downloadGitHub下载:https://github.com/apache/doris/rel
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,