- python鸢尾花数据集knn_【python+机器学习1】python 实现 KNN
weixin_39629269
python鸢尾花数据集knn
欢迎关注哈希大数据微信公众号【哈希大数据】1KNN算法基本介绍K-NearestNeighbor(k最邻近分类算法),简称KNN,是最简单的一种有监督的机器学习算法。也是一种懒惰学习算法,即开始训练仅仅是保存所有样本集的信息,直到测试样本到达才开始进行分类决策。KNN算法的核心思想:要想确定测试样本属于哪一类,就先寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后判断这K个样本中大部分所
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- 从文字到思维:呆马GPT在人工智能领域的创新之旅
呆码科技
gpt人工智能
引言生成式预训练变换器(GenerativePre-trainedTransformer,简称GPT)领域是人工智能技术中的一大革新。自OpenAI推出第一代GPT以来,该技术经历了多代发展,不断提升模型的规模、复杂度和智能化程度。GPT模型通过在大规模数据集上进行预训练,学习语言的统计规律和世界知识,然后在特定任务上进行微调,以适应不同的应用需求。GPT领域的发展推动了自然语言处理(NLP)技术
- SQL进阶——优化思路
mjr
sql数据库
优化注意事项:尽量避免使用select*在实际业务场景中,真正需要使用的只有其中一两列。写SQL语句时,有时候为了方便,直接使用select*,一次性查出表中所有列的数据。多查出来的数据,在网络传输的过程中,会增加数据传输的时间。更重要的是,select不会走覆盖索引,会出现大量的回表操作,从而导致查询性能很低。小表驱动大表即用小表的数据集驱动大表的数据集。假如有order和user两张表,其中o
- RLHF技术应用探析:从安全任务到高阶能力提升
XianxinMao
人工智能python算法
标题:RLHF技术应用探析:从安全任务到高阶能力提升文章信息摘要:该分析探讨了RLHF技术在三个主要应用方向的发展现状和潜力。在安全性和结构化任务方面,RLHF已展现出成熟优势,特别是在内容审核和格式转换等领域。在增强模型高阶能力方面,虽然显示出提升逻辑推理和代码生成能力的潜力,但仍处于探索阶段,面临数据集缺乏等挑战。在风格转换方面,RLHF能够实现更细粒度的表达方式控制,对提升模型实用性具有重要
- 第 3 章 核心处理层(中)
沉登c
MyBatis技术内幕mybatisjava
3.3ResultSetHandlerMyBatis将结果集按照映射配置文件中定义的映射规则,例如节点、resultType属性等,映射成相应的结果对象。这一过程是由ResultSetHandler完成的。publicinterfaceResultSetHandler{//处理结果集,生成相应的结果对象集合ListhandleResultSets(Statementstmt)throwsSQLEx
- 【江西省乡镇界】面图层shp格式乡镇名称和编码wgs84无偏移arcgis数据内容测评
鸿业远图科技
arcgis
标题中的“江西省乡镇界面图层shp格式乡镇名称和编码wgs84无偏移arcgis数据”指的是一份地理信息系统(GIS)的数据集,主要用于描绘江西省内各个乡镇的边界信息。这份数据集采用的是Shapefile(shp)格式,这是一种广泛用于GIS领域的矢量数据格式,可以存储地理特征的几何、属性和标识信息。其中,“乡镇名称和编码”指的是每个乡镇的专属标识,通常包括乡镇的名字和一个唯一编码,方便数据管理和
- tensorlow中tensorboard可视化展示训练过程
张登杰踩
tensorflowtensorboardtensorflowmnist神经网络
importtensorflowastffromtensorflow.examples.tutorials.mnistimportinput_datamax_steps=1000#训练步数learning_rate=0.001#设置学习率dropout=0.9#神经元保留比例data_dir='./MNIST_data'#数据存放路径#minist数据集下载链接:https://pan.baidu
- Java面试题及答案汇总(二,马士兵Java全套百度云
Java独家笑
程序员后端java面试
常用容器的图录:19.Collection和Collections有什么区别?java.util.Collection是一个集合接口(集合类的一个顶级接口)。它提供了对集合对象进行基本操作的通用接口方法。Collection接口在Java类库中有很多具体的实现。Collection接口的意义是为各种具体的集合提供了最大化的统一操作方式,其直接继承接口有List与Set。Collections则是集
- CSGHub 快速部署指南
算法llm
CSGHub快速部署指南OmnibusCSGHub是OpenCSG推出的使用Docker快速部署CSGHub的一种方式,主要用于快速功能体验和测试。Docker部署方式允许用户以较低成本在本地计算机部署CSGHub。此种部署方法非常适合概念验证和测试,使用户能够立即访问CSGHub的核心功能(包括模型,数据集管理、Space应用创建以及模型的推理和微调(需要GPU))。本文将带您一步步完成部署。什
- SQL之分析函数/开窗函数案例分析与题目练习
QQ糖~~~~
mysqloracleoraclesqlmysql
开窗函数简介:与聚合函数一样,开窗函数也是对行集组进行聚合计算,但是它不像普通聚合函数那样每组只返回一个值,开窗函数可以为每组返回多个值,因为开窗函数所执行聚合计算的行集组是窗口。在ISOSQL规定了这样的函数为开窗函数,在Oracle中则被称为分析函数。下面有一些习题来练习一下:数据表(Oracle):T_Person表保存了人员信息,FName字段为人员姓名,FCity字段为人员所在的城市名,
- adb结合wpa_cli查看wifi状态命令集
weixin_33790053
shell数据库python
2019独角兽企业重金招聘Python工程师标准>>>1.status查看当前的WIFI状态adbshellwpa_cli-iwlan0-g@android:wpa_wlan0IFNAME=wlan0statusbssid=70:62:b8:62:2e:c4//一个长度为48位二进制的数字标志,用于识别不同的BSS(BasicServiceSet)基本服务集,主要用于过滤freq=2412(1)2
- 全面解读STM32F103和STM32F107手册与Cortex-M3架构
脑叔
本文还有配套的精品资源,点击获取简介:基于ARM的Cortex-M3内核的STM32系列微控制器在嵌入式系统、物联网和工业控制领域得到广泛应用。STM32F103和STM32F107是该系列中的两款产品,前者面向中低端市场,后者增加USBOTG功能。Cortex-M3架构以其高效能、低功耗著称,支持Thumb-2指令集、内建浮点单元(FPU)和快速中断响应,适合于便携式设备。理解STM32F103
- springboot第83集:理解SaaS多租户应用的架构和设计,设备介入,网关设备,安全,实时实现,序列化...
掘金-我是哪吒
springboot架构安全数据库后端
springboot第83集:理解SaaS多租户应用的架构和设计,设备介入,网关设备,安全,实时实现,序列化,数据交换,存储与查询,流处理,消息队列[什么是多租户]聊到PaaS,SaaS,就不得不谈到多租户。多租户指一套系统能够支撑多个租户。一个租户通常是具有相似访问模式和权限的一组用户,典型的租户是同一个组织或者公司的若干用户。要实现多租户,首先需要考虑的是数据层面的多租户。数据层的多租户模型对
- ubuntu调用图形化网络测试工具
hunter206206
网络ubuntu网络测试工具
在Ubuntu中,除了命令行工具外,还有一些图形化的网络测试工具可以帮助你更直观地测试和分析网络性能。以下是几款常用的图形化网络测试工具及其使用方法:1.gnome-nettoolgnome-nettool是一个简单的图形化网络工具集,包含ping、traceroute、端口扫描等功能。安装:sudoaptupdatesudoaptinstallgnome-nettool使用:在应用程序菜单中搜索
- pandas介绍
June �
可视化python数据分析大数据机器学习
本文的主要内容是基于中国大学mooc(慕课)中的“Python数据分析与可视化”课程进行整理和总结。pandas是python第三方库,是基于Numpy的一种工具,经常与numpy与matplotlib一起使用,该工具是为了解决数据分析任务而创建的。Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。它是
- 数据结构与算法分析:专题内容——人工智能中的寻路3之广度优先搜索(代码详解)
梅见十柒
数据结构与算法分析算法c语言广度优先笔记
一、前言广度优先搜索尝试在不重复访问状态的情况下,寻找到一条最短路径。广度优先搜索保证如果存在一条到目标状态的路径,那么找到的肯定是最短路径。事实上,深度优先搜索和广度优先搜索的唯一不同就是广度优先搜索使用队列来保存开放集,而深度优先搜索使用栈。每次迭代时,广度优先搜索从队列头拿出一个未访问的状态,然后从这个状态开始,计算后继状态。如果达到了目标状态,那么搜索结束。任何已经在闭合集中的后继状态将会
- y98.第六章 微服务、服务网格及Envoy实战 -- 集群管理(九)
Raymond运维
云原生-微服务治理企业实战(已完结)microservicesenvoy运维云计算云原生
8.集群管理8.0本节话题集群管理器与服务发现机制主动健康状态检测与异常点探测负载均衡策略分布式负载均衡负载均衡算法:加权轮询、加权最少连接、环哈希、磁悬浮和随机等;区域感知路由全局负载均衡位置优先级位置权重均衡器子集熔断和连接池8.1集群管理器(ClusterManager)Envoy支持同时配置任意数量的上游集群,并基于ClusterManager管理它们;ClusterManager负责为集
- Git Bash在Windows下的使用与技巧
t0_54coder
gitbashwindows个人开发
在Windows系统中,Git提供了一个非常实用的工具——GitBash。它通过模拟UNIX风格的命令行环境,为开发者提供了一个强大的工具集,使得在Windows上进行版本控制和开发工作变得更加便捷。今天,我们就来深入了解一下GitBash的使用方法和一些实用技巧。一、GitBash是什么?GitBash是一个基于MinGW64的命令行工具,它为Windows系统提供了一个类似UNIX的环境。Mi
- 超分辨率体积重建实现术前前列腺MRI和大病理切片组织病理学图像的3D配准
CVer儿
语义分割3d
摘要:磁共振成像(MRI)在前列腺癌诊断和治疗中的应用正在迅速增加。然而,在MRI上识别癌症的存在和范围仍然具有挑战性,导致即使是专家放射科医生在检测结果上也存在高度变异性。提高MRI上的癌症检测能力对于减少这种变异性并最大化MRI的临床效用至关重要。迄今为止,这种改进受到缺乏准确标注的MRI数据集的限制。通过接受根治性前列腺切除术的患者数据,可以将切除前列腺的数字化组织病理学图像与术前MRI进行
- SQLDatabase Toolkit: 搭建基于SQL数据库的智能问答系统
azzxcvhj
数据库sqljvmpython
技术背景介绍SQLDatabaseToolkit是一个非常有用的工具集,旨在与SQL数据库进行交互。它的常见应用场景是通过数据库数据构建问答系统,特别是在需要迭代处理和错误恢复的情况下。此工具包在LangChain社区包中提供,支持多种大型语言模型(LLM)或聊天模型的集成。核心原理解析SQLDatabaseToolkit的核心功能包括查询执行、模式查找以及查询检查等。借助这些工具,可以构建一个智
- 软考信安26~大数据安全需求分析与安全保护工程
jnprlxc
软考~信息安全工程师需求分析安全运维笔记
1、大数据安全威胁与需求分析1.1、大数据相关概念发展大数据是指非传统的数据处理工具的数据集,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低等特征。大数据的种类和来源非常多,包括结构化、半结构化和非结构化数据。1.2、大数据安全威胁分析(1)“数据集“安全边界日渐模糊,安全保护难度提升(2)敏感数据泄露安全风险增大(3)数据失真与大数据污染安全风险(4)大数据处理平台业务连续性与拒
- 7. UFS 传输协议(UTP)层
>Andre<
UFS4.0解读嵌入式硬件
10.1概述SCSI架构模型[SAM]被用作UTP的通用架构模型,以及用于任务管理的SAM任务管理功能。任务通常是SCSI命令或服务请求。虽然该模型使用SCSI命令集作为命令集,但不一定必须专门使用SCSI命令。SAM架构是一种客户端-服务器模型,或者更常见的是请求-响应架构。客户端被称为发起者设备,服务器被称为目标设备。发起者设备和目标设备被映射到UFS物理网络设备中。发起者设备向目标设备发出命
- 2.UFS4.0 架构概述
>Andre<
UFS4.0解读嵌入式硬件
5.1UFS顶层架构图5.1展示了通用闪存存储(UFS)的顶层架构。图5.1—UFS顶层架构UFS通信是一种分层通信架构。它基于SCSISAM架构模型[SAM]。5.1.1应用层应用层由UFS命令集(UCS)、设备管理器和任务管理器组成。UCS将处理诸如读、写等常规命令。UFS可能支持多种命令集。UFS被设计为与协议无关。此版本UFS标准的命令集基于SCSI命令集。特别是,为UFS选择了一个简化的
- 第17篇:python进阶:详解数据分析与处理
猿享天开
python从入门到精通python开发语言
第17篇:数据分析与处理内容简介本篇文章将深入探讨数据分析与处理在Python中的应用。您将学习如何使用pandas库进行数据清洗与分析,掌握matplotlib和seaborn库进行数据可视化,以及处理大型数据集的技巧。通过丰富的代码示例和实战案例,您将能够高效地进行数据处理、分析和可视化,为数据驱动的决策提供有力支持。目录数据分析与处理概述什么是数据分析与处理数据分析的流程使用pandas进行
- Zookeeper(23)Zookeeper的选举机制是什么?
辞暮尔尔-烟火年年
微服务zookeeper分布式云原生
Zookeeper的选举机制是确保在集群中始终有一个唯一的Leader。Leader负责处理所有的写请求和协调事务的提交,而Follower负责处理读请求和转发写请求给Leader。选举机制的核心是ZookeeperAtomicBroadcast(Zab)协议,它确保在发生节点故障或网络分区时,能够快速而可靠地选出新的Leader。Zookeeper选举机制详细介绍初始选举:当Zookeeper集
- 第二章 SpringBoot快速开发框架 - Mysql数据源配置
暗夜91
SpringBoot快速开发基础框架mysqlspringbootjava
作者简介:作者:暗夜91个人主页:暗夜91的主页如果感觉文章写的还有点帮助,请帮忙点个关注,我会持续输出高质量技术博文。专栏文章:1、集成Swagger,生成API文档2、Mysql数据源配置3、集成Redis4、SpringSecurity+JWT实现登录权限认证5、跨域配置专栏源码:针对该专栏功能,对源码进行整理,可以直接下载运行。源码下载请移步:SpringBoot快速开发框架一、数据源配置
- P1 Pytorch入门实战——Pytorch实现mnist手写数字识别
今天补充能量了吗
pytorch人工智能python深度学习机器学习
本文為365天深度學習訓練營中的學習紀錄博客原作者:K同学啊|接輔導、項目定制一、MNIST手写数字数据集介绍MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28。如果我们把每一张图片中的像素转换为向量,则得到长度
- 【图像复原】论文精读:Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能计算机视觉图像修复图像处理论文阅读论文笔记
第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)文章目录前言Abstract1.Introduction2.RelatedWork3.Method3.1.ModelScalingUp3.2.ScalingUpTrainingData3
- PyTorch深度学习实战(43)——手写文本识别
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(43)——手写文本识别0.前言1.手写文本识别1.1基本概念1.2输入和输出格式1.3CTC损失值2.模型与数据集分析2.1数据集分析2.2模型分析3.实现手写文本识别模型小结系列链接0.前言手写文本识别,也称为手写文本的光学字符识别(OpticalCharacterRecognition,OCR),是计算机视觉和自然语言处理中的一项具有挑战性的任务。与印刷文本不同,手
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found