题目传送门
传送门
这个官方题解除了讲了个结论,感觉啥都没说,不知道是因为我太菜了,还是因为它真的啥都没说。
如果 $x \geqslant y$,显然 gcd(x, y) 只会被调用一次。
否则考虑每次操作前的数对应该是 $(y, y + kx)$。这样仍然不好处理。考虑忽略掉达到的 $a < b$ 的状态,那么每次的 $k \geqslant 1$。那么当较大数加上较小数的时候对应将 $k$ 加上 1,对应交换两边的数,然后将 $k$ 加上1。特别地,第一次操作不能做大加上小,因为第一次操作的时候没有 $k$。
显然每次操作中,数对可以表示为 $(ax + by, cx + dy)$。那么一次加操作会得到 $(a + c) x , (c + d) y$,你发现这个东西和 SBT 的构造有点像。考虑把这个操作对应到 SBT 上。在两个相邻分数 $a, b$ 中插入一个分数 $c$ 可以得到新的两对 $a, c$ 和 $(c, b)$,分别可以看右加上左边以及左边加上右边。
暂时不考虑 $m$ 的限制,我们来简单说明一下满足除了初始的数对一个数对可以对应 SBT 上某一层的一对相邻分数。考虑给出和上转化后的相同的生成方式。
考虑第 $k$ 层中一对存在对应关系的相邻分数 $(p, q)$。
如果 $p < q$,那么在树上的情况上是
假设在 $p, q$ 间插入的分数为 $t$,根据 SBT 的构造方式可知 $q, t$ 是第 $(k + 1)$ 层的相邻分数 $t, p$ 是第 $(k + 1)$ 层的相邻分数。它们分别对应右加上左以及左加上右。当 $q < p$ 的时候是类似的。
对于一个真分数 $\frac{a}{b}$,$xa + yb$ 的值总是比相应的它生成的两个分数的 $x'a + y'b$ 小 。一对相邻分数一定满足一个是另一个的祖先,这个不难使用归纳法证明。
现在考虑加入 $m$ 的限制,那么真分数 $\frac{x}{y}$ 满足条件当且仅当 $x \leqslant y$ 以及 $xa + yb \leqslant m$,并且每一个满足条件的小于 $1$ 的真分数对应 $4$ 个满足条件的数对,特别地,1 如果合法只会对应 2 个满足条件的数对。
前一个条件是因为第一次只能大加上小,第二个是因为题目限制。充分性由 SBT 构造过程和上面转化给出。
那剩下的问题就非常傻逼了:
$$
\begin{align}
\sum_{i = 1}^{m} \sum_{j = 1}^{m} [i \leqslant j][(i, j) = 1][xi + yj \leqslant m]
\end{align}
$$
基础莫比乌斯反演 & 类欧几里得即可计算。
Code
#includeusing namespace std; typedef bool boolean; #define ll long long ll ceil(ll a, ll b) { return (a < 0) ? ((a - b + 1) / b) : (a / b); } ll calc(ll a, ll b, ll c, ll n) { if (!n) { return 0; } if (!a) { return ceil(b, c) * n; } if (b < 0 || b >= c || a < 0 || a >= c) { ll ka = ceil(a, c), kb = ceil(b, c); ll tmp = ka * ((n * (n - 1)) >> 1) + kb * n; return calc(a - ka * c, b - kb * c, c, n) + tmp; } ll m = ((n - 1) * a + b) / c; return n * m - calc(c, c - b + a - 1, a, m); } const int C = 1e6 + 5; const int D = 4e4 + 5; int pri[C]; int mu[C], smu[C]; void Euler(int n) { static bitset vis; int num = 0; mu[1] = 1; for (int i = 2; i <= n; i++) { if (!vis.test(i)) { pri[num++] = i; mu[i] = -1; } for (int *p = pri, *_ = pri + num, x; p != _ && (x = *p * i) <= n; p++) { vis.set(x); if (i % *p) { mu[x] = -mu[i]; } else{ mu[x] = 0; break; } } } for (int i = 1; i <= n; i++) smu[i] = smu[i - 1] + mu[i]; } int T, N; int smu1[D]; boolean vis[D]; int S(int n) { if (n <= 1000000) return smu[n]; if (vis[N / n]) return smu1[N / n]; int &rt = smu1[N / n]; rt = 1; vis[N / n] = true; for (int i = 2, j; i <= n; i = j + 1) { j = n / (n / i); rt -= S(n / i) * (j - i + 1); } return rt; } int main() { scanf("%d%d", &T, &N); Euler(1000000); int x, y; while (T--) { scanf("%d%d", &x, &y); if (x <= y) { puts("1"); continue; } ll ans = 0; for (int i = 1, j; i <= N / (x + y); i = j + 1) { j = N / (N / i); ans += (S(j) - S(i - 1)) * calc(-x - y, N / i - x - y, x, N / (i * (x + y))); } ans = ((ans << 1) + 1 + (x + y <= N)) << 1; printf("%lld\n", ans); } return 0; }