基本RAID级别简介

独立磁盘冗余数组(RAID, Redundant Array of Independent Disks)简称硬盘阵列,其基本思想就是把多个相对便宜的硬盘组合起来,成为一个硬盘阵列组,使性能达到甚至超过一个价格昂贵、容量巨大的硬盘。根据选择的版本不同,RAID比单颗硬盘有以下一个或多个方面的好处:增强数据集成度,增强容错功能,增加处理量或容量。另外,磁盘阵列对于电脑来说, 看起来就像一个单独的硬盘或逻辑存储单元。RAID有很多级别,并且他们之间可以根据需要灵活组合。

标准RAID

RAID 0:无差错控制的带区组

要实现RAID 0必须要有两个以上硬盘驱动器,RAID 0实现了带区组,数据并不是保存在一个硬盘上,而是分成数据块保存在不同驱动器上。因为将数据分布在不)编辑和其它要求传输比较大的场合使用RAID0比较合适。同时,RAID可以提高数据传输速率,比如同驱动器上,所以数据吞吐率大大提高,驱动器的负载也比较平衡。如果刚好所需要的数据在不同的驱动器上效率最好。它不需要计算校验码,实现容易。它的缺点是它没有数据差错控制,如果一个驱动器中的数据发生错误,即使其它盘上的数据正确也无济于事了。不应该将它用于对数据稳定性要求高的场合。如果用户进行图象(包括动画所需读取的文件分布在两个硬盘上,这两个硬盘可以同时读取。那么原来读取同样文件的时间被缩短为1/2。在所有的级别中,RAID 0的速度是最快的。但是RAID 0没有冗余功能的,如果一个磁盘(物理)损坏,则所有的数据都无法使用。


基本RAID级别简介_第1张图片

RAID 1:镜像结构

对于使用这种RAID 1结构的设备来说,RAID控制器必须能够同时对两个盘进行读操作和对两个镜象盘进行写操作。因为是镜象结构在一组盘出现问题时,可以使用镜象,提高系统的容错能力。它比较容易设计和实现。每读一次盘只能读出一块数据,也就是说数据块传送速率与单独的盘的读取速率相同。因为RAID 1的校验十分完备,因此对系统的处理能力有很大的影响,通常的RAID功能由软件实现,而这样的实现方法在服务器负载比较重的时候会大大影响服务器效率。当您的系统需要极高的可靠性时,如进行数据统计,那么使用RAID 1比较合适。而且RAID 1技术支持“热替换”,即不断电的情况下对故障磁盘进行更换,更换完毕只要从镜像盘上恢复数据即可。当主硬盘损坏时,镜像硬盘就可以代替主硬盘工作。镜像硬盘相当于一个备份盘,可想而知,这种硬盘模式的安全性是非常高的,RAID 1的数据安全性在所有的RAID级别上来说是最好的。但是其磁盘的利用率却只有50%,是所有RAID级别中最低的。


基本RAID级别简介_第2张图片

RAID 1.5:一个新生的磁盘阵列方式

它具有RAID 0+1的特性,而不同的是,它的实现只需要2个硬盘。
从表面上来看,组建RAID 1.5后的磁盘,两个都具有相同的数据。当然,RAID 1.5也是一种不能完全利用磁盘空间的磁盘阵列模式,因此,两个80GB的硬盘在组建RAID 1.5后,和RAID 1是一样的,即只有80GB的实际使用空间,另外80GB是它的备份数据。如果把两个硬盘分开,分别把他们运行在原系统,也是畅通无阻的。但通过实际应用,我们发现如果两个硬盘在分开运行后,其数据的轻微改变都会引起再次重组后的磁盘阵列,没法实现完全的数据恢复,而是以数据较少的磁盘为准。

RAID 2:带海明码校验

这是RAID 0的改良版,以汉明码(Hamming Code)的方式将数据进行编码后分区为独立的比特,并将数据分别写入硬盘中。因为在数据中加入了错误修正码(ECC,Error Correction Code),所以数据整体的容量会比原始数据大一些,RAID 2最少要三台磁盘驱动器方能运作。
从概念上讲,RAID 2同RAID 3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节。然而RAID 2 使用一定的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂。因此,在商业环境中很少使用。下图右边的各个磁盘上是数据的各个位,由一个数据不同的位运算得到的海明校验码可以保存另一组磁盘上,具体情况请见下图。由于海明码的特点,它可以在数据发生错误的情况下将错误校正,以保证输出的正确。它的数据传送速率相当高,如果希望达到比较理想的速度,那最好提高保存校验码ECC码的硬盘,对于控制器的设计来说,它又比RAID 3、4或5要简单。没有免费的午餐,这里也一样,要利用海明码,必须要付出数据冗余的代价。输出数据的速率与驱动器组中速度最慢的相等。


基本RAID级别简介_第3张图片

RAID 3:带奇偶校验码的并行传送

用Bit-interleaving(数据交错存储)技术,它需要通过编码再将数据比特分割后分别存在硬盘中,而将同比特检查后单独存在一个硬盘中,但由于数据内的比特分散在不同的硬盘上,因此就算要读取一小段数据资料都可能需要所有的硬盘进行工作,所以这种规格比较适于读取大量数据时使用。
这种校验码与RAID 2不同,只能查错不能纠错。它访问数据时一次处理一个带区,这样可以提高读取和写入速度,它像RAID 0一样以并行的方式来存放数据,但速度没有RAID 0快。校验码在写入数据时产生并保存在另一个磁盘上。需要实现时用户必须要有三个以上的驱动器,写入速率与读出速率都很高,因为校验位比较少,因此计算时间相对而言比较少。用软件实现RAID控制将是十分困难的,控制器的实现也不是很容易。它主要用于图形(包括动画)等要求吞吐率比较高的场合。不同于RAID 2,RAID 3使用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据。 如果奇偶盘失效,则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据,奇偶盘会成为写操作的瓶颈。 利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为(n-1)/n。


基本RAID级别简介_第4张图片

RAID 4:带奇偶校验码的独立磁盘结构

RAID 4和RAID 3很像,不同的是它在分区时是以区块为单位分别存在硬盘中,但每次的数据访问都必须从同比特检查的那个硬盘中取出对应的同比特数据进行核对,也就是按磁盘进行的,每次是一个盘。由于过于频繁的使用,所以对硬盘的损耗可能会提高。(块交织技术,Block interleaving)
在图上可以这么看,RAID 3是一次一横条,而RAID 4一次一竖条。它的特点的RAID 3也挺象,不过在失败恢复时,它的难度可要比RAID 3大得多了,控制器的设计难度也要大许多,而且访问数据的效率不怎么好。


基本RAID级别简介_第5张图片

RAID 5:分布式奇偶校验的独立磁盘结构

从它的示意图上可以看到,它的奇偶校验码存在于所有磁盘上,其中的p0代表第0带区的奇偶校验值,其它的意思也相同。RAID5的读出效率很高,写入效率一般,块式的集体访问效率不错。因为奇偶校验码在不同的磁盘上,所以提高了可靠性,允许单个磁盘出错。RAID 5也是以数据的校验位来保证数据的安全,但它不是以单独硬盘来存放数据的校验位,而是将数据段的校验位交互存放于各个硬盘上。这样,任何一个硬盘损坏,都可以根据其它硬盘上的校验位来重建损坏的数据。硬盘的利用率为n-1。但是它对数据传输的并行性解决不好,而且控制器的设计也相当困难。RAID 3与RAID 5相比,重要的区别在于RAID 3每进行一次数据传输,需涉及到所有的阵列盘。而对于RAID 5来说,大部分数据传输只对一块磁盘操作,可进行并行操作。在RAID 5中有“写损失”,即每一次写操作,将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。RAID-5的话,优点是提供了冗余性(支持一块盘掉线后仍然正常运行),磁盘空间利用率较高(N-1/N),读写速度较快(N-1倍)。RAID5最大的好处是在一块盘掉线的情况下,RAID照常工作,相对于RAID0必须每一块盘都正常才可以正常工作的状况容错性能好多了。因此RAID5是RAID级别中最常见的一个类型。RAID5校验位即P位是通过其它条带数据做异或(xor)求得的。计算公式为P=D0xorD1xorD2…xorDn,其中p代表校验块,Dn代表相应的数据块,xor是数学运算符号异或。
RAID 5校验位算法详解
P = D1 xor D2 xor D3 … xor Dn (D1,D2,D3 …Dn为数据块,P为校验,xor为异或运算)

XOR(Exclusive OR)的校验原理如下表:

A值 B值 XOR结果
0 0 0
1 0 1
0 1 1
1 1 0

这里的A与B值就代表了两个位,从中可以发现,A与B一样时,XOR(非或又称"非异或")结果为0,A与B不一样时,XOR结果就是1,如果知道XOR结果,A和B中的任何两个数值,就可以反推出剩下的一个数值。比如A为1,XOR结果为1,那么B肯定为0,如果XOR结果为0,那么B肯定为1。这就是XOR编码与校验的基本原理。


基本RAID级别简介_第6张图片

RAID 6: 两种存储的奇偶校验码的磁盘结构

名字很长,但是如果看到图,大家立刻会明白是为什么,请注意p0代表第0带区的奇偶校验值,而pA代表数据块A的奇偶校验值。它是对RAID5的扩展,主要是用于要求数据绝对不能出错的场合。当然了,由于引入了第二种奇偶校验值,所以需要N+2个磁盘,同时对控制器的设计变得十分复杂,写入速度也不好,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了不必须的负载。我想除了军队没有人用得起这种东西。

常见的RAID6组建类型RAID 6(6D + 2P)
RAID 6(6D + 2P)原理
和RAID 5相似,RAID 6(6D + 2P)根据条带化的数据生成校验信息,条带化数据和校验数据一起分散存储到RAID组的各个磁盘上。在图1中,D0,D1,D2,D3,D4和D5是条带化的数据,P代表校验数据,Q是第二份校验数据。
RAID 6(6D + 2P)根据条带化的数据生成校验信息,条带化数据和校验数据一起分散存储到RAID组的各个磁盘上

RAID 6校验数据生成公式(P和Q):
P的生成用了异或,Q的生成用了系数和异或

P = D0 XOR D1 XOR D2 XOR D3 XOR D4 XOR D5
Q = A0*D0 XOR A1*D1 XOR A2*D2 XOR A3*D3 XOR A4*D4 XOR A5*D5
其中,D0~D5是条带化数据, A0~A5是系数

在RAID 6中,当有1块磁盘出故障的时候,利用公式1恢复数据,这个过程是和RAID 5一样的。而当有2块磁盘同时出故障的时候,就需要同时用公式1和公式2来恢复数据了。
各系数A0~A5是线性无关的系数,在D0,D1,D2,D3,D4,D5,P,Q中有两个未知数的情况下,也可以联列求解两个方程得出两个未知数的值。这样在一个RAID组中有两块磁盘同时坏的情况下,也可以恢复数据。
上面描述的是校验数据生成的算法。其实RAID 6的核心就是有两份检验数据,以保证两块磁盘同时出故障的时候,也能保障数据的安全。


基本RAID级别简介_第7张图片

混合RAID

RAID 7:优化的高速数据传送磁盘结构

RAID 7并非公开的RAID标准,而是Storage Computer Corporation的专利硬件产品名称,RAID 7是以RAID 3及RAID 4为基础所发展,但是经过强化以解决原来的一些限制。RAID 7所有的I/O传送均是同步进行的,可以分别控制,这样提高了系统的并行性,提高系统访问数据的速度;每个磁盘都带有高速缓冲存储器,实时操作系统可以使用任何实时操作芯片,达到不同实时系统的需要。允许使用SNMP协议进行管理和监视,可以对校验区指定独立的传送信道以提高效率。可以连接多台主机,因为加入高速缓冲存储器,当多用户访问系统时,访问时间几乎接近于0。由于采用并行结构,因此数据访问效率大大提高。需要注意的是它引入了一个高速缓冲存储器,这有利有弊,因为一旦系统断电,在高速缓冲存储器内的数据就会全部丢失,因此需要和UPS一起工作。当然了,这么快的东西,价格也非常昂贵。

RAID 10/01:高可靠性与高效磁盘结构

这种结构无非是一个带区结构加一个镜象结构,因为两种结构各有优缺点,因此可以相互补充,达到既高效又高速还可以互为镜像的目的。大家可以结合两种结构的优点和缺点来理解这种新结构。这种新结构的价格高,可扩充性不好。主要用于容量不大,但要求速度和差错控制的数据库中。

其中可分为两种组合:RAID 10和RAID 01
RAID 10是先镜射再分区数据。是将所有硬盘分为两组,视为是RAID 0的最低组合,然后将这两组各自视为RAID 1运作。RAID 10有着不错的读取速度,而且拥有比RAID 0更高的数据保护性。
RAID 01则是跟RAID 10的程序相反,是先分区再将数据镜射到两组硬盘。它将所有的硬盘分为两组,变成RAID 1的最低组合,而将两组硬盘各自视为RAID 0运作。RAID 01比起RAID 10有着更快的读写速度,不过也多了一些会让整个硬盘组停止运转的机率;因为只要同一组的硬盘全部损毁,RAID 01就会停止运作,而RAID 10则可以在牺牲RAID 0的优势下正常运作。
RAID 10巧妙的利用了RAID 0的速度以及RAID 1的保护两种特性,不过它的缺点是需要的硬盘数较多,因为至少必须拥有四个以上的偶数硬盘才能使用。

当RAID 10有一个硬盘受损,其余硬盘会继续运作。RAID 01只要有一个硬盘受损,同组RAID 0的所有硬盘都会停止运作,只剩下其他组的硬盘运作,可靠性较低。如果以六个硬盘建RAID 01,镜射再用三个建RAID 0,那么坏一个硬盘便会有三个硬盘离线。因此,RAID 10远较RAID 01常用,零售主板绝大部分支持RAID 0/1/5/10,但不支持RAID 01。

基本RAID级别简介_第8张图片

基本RAID级别简介_第9张图片

RAID 50:被称为分布奇偶位阵列条带

RAID 5与RAID 0的组合,先作RAID 5,再作RAID 0,也就是对多组RAID 5彼此构成Stripe访问。由于RAID 50是以RAID 5为基础,而RAID 5至少需要3颗硬盘,因此要以多组RAID 5构成RAID 50,至少需要6颗硬盘。以RAID 50最小的6颗硬盘配置为例,先把6颗硬盘分为2组,每组3颗构成RAID 5,如此就得到两组RAID 5,然后再把两组RAID 5构成RAID 0。
RAID 50在底层的任一组或多组RAID 5中出现1颗硬盘损坏时,仍能维持运作,不过如果任一组RAID 5中出现2颗或2颗以上硬盘损毁,整组RAID 50就会失效。
RAID 50由于在上层把多组RAID 5构成Stripe,性能比起单纯的RAID 5高,容量利用率比RAID5要低。比如同样使用9颗硬盘,由各3颗RAID 5再组成RAID 0的RAID 50,每组RAID 5浪费一颗硬盘,利用率为(1-3/9),RAID 5则为(1-1/9)。


基本RAID级别简介_第10张图片

RAID 53:称为高效数据传送磁盘结构

它拥有一个镜射条带数组,硬盘里其中一个条带就是一个是由3组以上的RAID 5组成RAID 3硬盘阵列。

RAID 60

RAID 6与RAID 0的组合:先作RAID 6,再作RAID 0。换句话说,就是对两组以上的RAID 6作Stripe访问。RAID 6至少需具备4颗硬盘,所以RAID 60的最小需求是8颗硬盘。
由于底层是以RAID 6组成,所以RAID 60可以容许任一组RAID 6中损毁最多2颗硬盘,而系统仍能维持运作;不过只要底层任一组RAID 6中损毁3颗硬盘,整组RAID 60就会失效,当然这种情况的机率相当低。
比起单纯的RAID 6,RAID 60的上层通过结合多组RAID 6构成Stripe访问,因此性能较高。不过使用门槛高,而且容量利用率低是较大的问题。


基本RAID级别简介_第11张图片

你可能感兴趣的:(基本RAID级别简介)