函数装饰器(function decorator)可以对函数进行“标注”,给函数提供更多的特性。
在理解装饰器之前需要理解闭包(closure)。Python3.0 引入了保留关键字 nonlocal,使用闭包同样也离不开 nonlocal。顺便说一句,闭包除了用在装饰器上,对于异步编程也是很重要的概念。
装饰器(decorator)是一个可调用的装饰函数,它接收另一个函数作为参数。
假设已经定义好了一个装饰器 decorate(decorate 实际上是一个接收函数并且返回函数的函数),那么以下两段代码是等价的。
@decorate def target(): print('running target()')
和
def target(): print('running target()') target = decorate(target)
可以看到,@标注这种语法实际上是一个语法糖。target 经过标注后已经成为了另一个函数 decorate(target)。
我们再看看一个实际定义 decorate 的例子:
def decorator(func): def inner(): print('running inner()') return inner @decorator def target1(): print('running target1()') def target2(): print('running target2()') inner_func1 = target1() print(inner_func1) print('-' * 10) print(target1) print('*' * 10) inner_func2 = decorator(target2)() print(inner_func2) print('-' * 10) print(decorator(target2))
输出:
running inner() None ---------- <function decorator..inner at 0x10ae3f598> ********** running inner() None ---------- <function decorator. .inner at 0x10aee7510>
根据代码和结果进一步验证我们的理解。通过装饰器函数的标注,一个函数可以变为另一个函数。至于怎么转换的,是根据装饰器函数本身定义的。装饰器函数的输入和输出都是函数,它定义了函数的变换。
装饰器的执行顺序
当定义一个函数 A 时,如果它用了装饰标注 B,那么 A 在定义时就已经执行了装饰器 B 的代码,而不是在调用函数 A 时执行。即:
def decorator(func): print('running decorator(func)') def inner(): print('running inner()') return inner @decorator def target(): print('target()') print('before calling target.') target()
等价于
def decorator(func): print('running decorator(func)') def inner(): print('running inner()') return inner def target(): print('target()') target = decorator(target) print('before calling target.') target()
其结果都是:
running decorator(func)
before calling target.
running inner()
因为这个原因,装饰器往往在导入模块的时候就会执行(import time),而被装饰函数(装饰器返回的函数)是在显式调用的时候执行(runtime)。
不改变原函数的装饰器
大多数装饰器往往都会改变原函数,但也有一些应用场景不会改变原函数。例如:
registry = [] def register(func): registry.append(func) return func
这种装饰器会收集使用过它的函数。
变量范围规则
以下代码会因为变量 b 没有定义而报错:
def f1(a): print(a) print(b) f1(3)
3 --------------------------------------------------------------------------- NameError Traceback (most recent call last)in 3 print(b) 4 ----> 5 f1(3) in f1(a) 1 def f1(a): 2 print(a) ----> 3 print(b) 4 5 f1(3) NameError: name 'b' is not defined
而下面代码因为全局变量 b 的存在而不会报错。
b = 6
f1(3)
3 6
接下来才是重点,以下代码会报错:
b = 6 def f2(a): print(a) print(b) b = 9 f2(3)
3 --------------------------------------------------------------------------- UnboundLocalError Traceback (most recent call last)in 5 b = 9 6 ----> 7 f2(3) in f2(a) 2 def f2(a): 3 print(a) ----> 4 print(b) 5 b = 9 6 UnboundLocalError: local variable 'b' referenced before assignment
这是因为 Python 在编译函数时,发现了 b 在函数内进行了赋值,因此它认为 b 是一个局部变量。于是生成的字节码会认为 b 是局部变量,会试图在局部环境中找到 b,于是报错了。
如果需要修复这个问题,需要进行显式地全局声明:
b = 6 def f3(a): global b print(a) print(b) b = 9 f3(3)
3 6
闭包
由于匿名函数经常在函数内定义一个函数,而闭包也用到了嵌套函数,所以两者经常混淆。
但是实际上,闭包的关注点不在于匿名与否。闭包是这样一个函数,它在函数内绑定了一个函数外的非全局变量。
我们看看这样一个计算平均数的闭包。
def make_averager(): series = [] def averager(new_value): series.append(new_value) total = sum(series) return total/len(series) return averager avg = make_averager() avg(10) avg(15) avg(20)
输出:
10.0 12.5 15.0
这里的 series 称之为自由变量(free variable),尽管 make_averager 已经调用完了,但是 series 依然包含在闭包中而没有销毁,averager 函数依然可以使用它。
查看 avg 的变量:
avg.__code__.co_varnames avg.__code__.co_freevars
输出:
('new_value', 'total') ('series',)
所以,闭包就是包含了自由变量的一个函数。
为了便于类比,我们再看看一个基于类的实现:
class Averager(): def __init__(self): self.series = [] def __call__(self, new_value): self.series.append(new_value) total = sum(self.series) return total/len(self.series) avg = Averager() avg(10) avg(15) avg(20)
输出:
10.0 12.5 15.0
nonlocal
一个更优雅的闭包,避免存储一个列表:
def make_averager(): count = 0 total = 0 def averager(new_value): nonlocal count, total count += 1 total += new_value return total / count return averager avg = make_averager() avg(10) avg(15) avg(20)
这里使用了 nonlocal,表示该变量不是局部变量。这个关键字是用于处理前面提到的变量范围规则:当函数有赋值语句时,Python 会认为这个变量是局部变量。显然我们应该让 count 和 total 作为 averager 外的自由变量,于是需要加上 nonlocal 关键字。
实现一个简单的装饰器
以下是一个计时装饰器的示例:
import time def clock(func): def clocked(*args, **kwargs): """ clocked doc """ t0 = time.perf_counter() result = func(*args, **kwargs) elapsed = time.perf_counter() - t0 name = func.__name__ arg_str = ', '.join(repr(arg) for arg in args) print('[%0.8fs] %s(%s) -> %r' % (elapsed, name, arg_str, result)) return result return clocked @clock def snooze(seconds): """ snooze doc """ time.sleep(seconds) @clock def factorial(n): """ factorial doc """ return 1 if n < 2 else n*factorial(n-1) print('*' * 40, 'Calling snooze(.123)') snooze(.123) print('*' * 40, 'Calling factorial(6)') print('6! =', factorial(6))
输出:
**************************************** Calling snooze(.123) [0.12775655s] snooze(0.123) -> None **************************************** Calling factorial(6) [0.00000100s] factorial(1) -> 1 [0.00006883s] factorial(2) -> 2 [0.00012012s] factorial(3) -> 6 [0.00016687s] factorial(4) -> 24 [0.00022555s] factorial(5) -> 120 [0.00030625s] factorial(6) -> 720 6! = 720
其结果是不言而喻的,装饰器对原函数进行了包装,变为一个新函数,增加了计时信息。以上的装饰器有一些小缺陷:
snooze.__name__ snooze.__doc__ factorial.__name__ factorial.__doc__
'clocked' '\n clocked doc\n ' 'clocked' '\n clocked doc\n
可以看到装饰器“污染”了被装饰函数的一些属性。
使用 functools.wrap:一种更优雅的做法:
import time import functools def clock(func): @functools.wraps(func) def clocked(*args, **kwargs): t0 = time.time() result = func(*args, **kwargs) elapsed = time.time() - t0 name = func.__name__ arg_lst = [] if args: arg_lst.append(', '.join(repr(arg) for arg in args)) if kwargs: pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())] arg_lst.append(', '.join(pairs)) arg_str = ', '.join(arg_lst) print('[%0.8fs] %s(%s) -> %r ' % (elapsed, name, arg_str, result)) return result return clocked @clock def snooze(seconds): """ snooze doc """ time.sleep(seconds) @clock def factorial(n): """ factorial doc """ return 1 if n < 2 else n*factorial(n-1) print('*' * 40, 'Calling snooze(.123)') snooze(.123) print('*' * 40, 'Calling factorial(6)') print('6! =', factorial(6)) snooze.__name__ snooze.__doc__ factorial.__name__ factorial.__doc__
输出:
**************************************** Calling snooze(.123) [0.12614298s] snooze(0.123) -> None **************************************** Calling factorial(6) [0.00000119s] factorial(1) -> 1 [0.00012970s] factorial(2) -> 2 [0.00022101s] factorial(3) -> 6 [0.00031495s] factorial(4) -> 24 [0.00039506s] factorial(5) -> 120 [0.00047684s] factorial(6) -> 720 6! = 720 'snooze' '\n snooze doc\n ' 'factorial' '\n factorial doc\n
标准库中的装饰器
Python 有 3 种用于装饰方法的内置函数:
- property
- classmathod
- staticmethod
另一种常见的装饰器是 functools.wraps。
标准库还有两个有意思的装饰器(在 functools 中定义)是:
- lru_cache
- singledispatch
functools.lru_cache
functools.lru_cache 实现了记忆功能。LRU 表示 Least Recently Used。我们看看这个装饰器如何加速 fibonacci 的递归。
普通方法:
@clock def fibonacci(n): if n < 2: return n return fibonacci(n-2) + fibonacci(n-1) print(fibonacci(6))
输出:
[0.00000000s] fibonacci(0) -> 0 [0.00000310s] fibonacci(1) -> 1 [0.00028276s] fibonacci(2) -> 1 [0.00000095s] fibonacci(1) -> 1 [0.00000000s] fibonacci(0) -> 0 [0.00000167s] fibonacci(1) -> 1 [0.00007701s] fibonacci(2) -> 1 [0.00015092s] fibonacci(3) -> 2 [0.00051212s] fibonacci(4) -> 3 [0.00000095s] fibonacci(1) -> 1 [0.00000000s] fibonacci(0) -> 0 [0.00000095s] fibonacci(1) -> 1 [0.00007415s] fibonacci(2) -> 1 [0.00014782s] fibonacci(3) -> 2 [0.00000095s] fibonacci(0) -> 0 [0.00000095s] fibonacci(1) -> 1 [0.00007510s] fibonacci(2) -> 1 [0.00000119s] fibonacci(1) -> 1 [0.00000095s] fibonacci(0) -> 0 [0.00000000s] fibonacci(1) -> 1 [0.00007606s] fibonacci(2) -> 1 [0.00015116s] fibonacci(3) -> 2 [0.00030208s] fibonacci(4) -> 3 [0.00052595s] fibonacci(5) -> 5 [0.00111508s] fibonacci(6) -> 8 8
使用 lru_cache:
@functools.lru_cache() @clock def fibonacci(n): if n < 2: return n return fibonacci(n-2) + fibonacci(n-1) print(fibonacci(6))
[0.00000095s] fibonacci(0) -> 0 [0.00000191s] fibonacci(1) -> 1 [0.00041223s] fibonacci(2) -> 1 [0.00000215s] fibonacci(3) -> 2 [0.00048995s] fibonacci(4) -> 3 [0.00000215s] fibonacci(5) -> 5 [0.00056982s] fibonacci(6) -> 8 8
泛型函数:singledispatch
泛型函数:一组用不同方式(依据第一个参数的类型)执行相似操作的函数。
代码感受一下:
from functools import singledispatch from collections import abc import numbers import html @singledispatch def htmlize(obj): content = html.escape(repr(obj)) return '{}'.format(content) @htmlize.register(str) def _(text): content = html.escape(text).replace('\n', '
\n') return '{0}
'.format(content) @htmlize.register(numbers.Integral) def _(n): return '{0} (0x{0:x})'.format(n) @htmlize.register(tuple) @htmlize.register(abc.MutableSequence) def _(seq): inner = '\n'.join(htmlize(item) for item in seq) return '\n
' + inner + '\n' htmlize({1, 2, 3}) htmlize(abs) htmlize('Heimlich & Co.\n- a game') htmlize(42) print(htmlize(['alpha', 66, {3, 2, 1}]))
输出:
'{1, 2, 3}' '<built-in function abs>' 'Heimlich & Co.
' '
\n- a game42 (0x2a)'
alpha
66 (0x42)
{1, 2, 3}
装饰器的串联
顾名思义,一个函数可以被多个装饰器修饰。
@d1 @d2 def f(): print('f')
等价于
def f(): print('f') f = d1(d2(f))
含参的装饰器
我们知道,当函数被装饰器装饰的时候,实际上是作为参数传入给了装饰器。要实现含参装饰器,需要构建一个装饰器工厂函数,这个函数接收参数,返回一个装饰器。说白了,就是又多了一层函数嵌套,写一个返回装饰器的函数。
下面提供一些例子作为参考。
注册器
registry = set() def register(active=True): def decorate(func): print('running register(active=%s)->decorate(%s)' % (active, func)) if active: registry.add(func) else: registry.discard(func) return func return decorate @register(active=False) def f1(): print('running f1()') @register() def f2(): print('running f2()') def f3(): print('running f3()') registry register()(f3) registry register(active=False)(f2) registry
输出:
running register(active=False)->decorate() running register(active=True)->decorate( ) { } running register(active=True)->decorate( ) { , } running register(active=False)->decorate( ) { }
计时器
import time DEFAULT_FMT = '[{elapsed:0.8f}s] {name}({args}) -> {result}' def clock(fmt=DEFAULT_FMT): def decorate(func): def clocked(*_args): t0 = time.time() _result = func(*_args) elapsed = time.time() - t0 name = func.__name__ args = ', '.join(repr(arg) for arg in _args) result = repr(_result) print(fmt.format(**locals())) return _result return clocked return decorate @clock() def snooze(seconds): time.sleep(seconds) for i in range(3): snooze(.123)
[0.12674093s] snooze(0.123) -> None [0.12725592s] snooze(0.123) -> None [0.12320995s] snooze(0.123) -> None
UDP 客户端/服务器
""" UDP client/server decorator UDP client: to send data. UDP server: to perform operation on the frame it receives. """ import functools import socket import json import time def process_udp_server(ip='0.0.0.0', port=8999, data_size=1024 * 10): """ UDP server decorator :param ip: :param port: :param data_size: :return: """ server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) server.bind((ip, port)) print(f'UDP server started at {str(ip) + ":" + str(port)}.') def start_server(func): @functools.wraps(func) def processed(*args, **kwargs): while True: data = server.recv(data_size) data = json.loads(data.decode()) res = func(data, *args, **kwargs) if res == -1: break return processed return start_server def camera_udp_client(ip, port): """ UDP client decorator :param ip: :param port: :return: """ client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) def start_client(func): @functools.wraps(func) def send_data(*args, **kwargs): data = func(*args, **kwargs) client.sendto(str.encode(json.dumps(data)), (ip, port)) return send_data return start_client if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-m', '--mode', type=str, help='server/client mode', default='server') parser.add_argument('-i', '--ip', type=str, help='IP address', default='0.0.0.0') parser.add_argument('-p', '--port', type=int, help='UDP port', default=8999) parser.add_argument('-c', '--camera', type=int, help='camera number', default=0) args = parser.parse_args() if args.mode == 'server': @process_udp_server(args.ip, args.port, 1024 * 1024) def multiply(x): time.sleep(1) print(x * 2) multiply() elif args.mode == 'client': @camera_udp_client(args.ip, args.port) def send_single_data(x): return x while True: send_single_data(8) time.sleep(1) else: print('python udp_decorator.py -m [server|client]')
参考
- 《Fluent Python》by Luciano Ramalho