Spark 2.0 RPC通信层设计原理分析

Spark RPC层设计概况

spark2.0的RPC框架是基于优秀的网络通信框架Netty开发的,我们先把Spark中与RPC相关的一些类的关系梳理一下,为了能够更直观地表达RPC的设计,我们先从类的设计来看,如下图所示:


Spark 2.0 RPC通信层设计原理分析_第1张图片

从上图左半边可以看出,RPC通信主要有RpcEnv、RpcEndpoint、RpcEndpointRef这三个核心类。
RpcEndpoint是一个通信端,例如Spark集群中的Master,或Worker,都是一个RpcEndpoint。但是,如果想要与一个RpcEndpoint端进行通信,一定需要获取到该RpcEndpoint一个RpcEndpointRef,通过RpcEndpointRef与RpcEndpoint进行通信,只能通过一个RpcEnv环境对象来获取RpcEndpoint对应的RPCEndpointRef。

客户端通过RpcEndpointRef发消息,首先通过RpcEnv来处理这个消息,找到这个消息具体发给谁,然后路由给RpcEndpoint实体。Spark默认使用更加高效的NettyRpcEnv。下面对这个三个类进行详细介绍。

RpcEnv

RpcEnv是RPC的环境对象,管理着整个RpcEndpoint的生命周期,其主要功能有:根据name或uri注册endpoints、管理各种消息的处理、停止endpoints。其中RpcEnv只能通过RpcEnvFactory创建得到。
RpcEnv中有一个核心的方法:
def setupEndpoint(name: String, endpoint: RpcEndpoint): RpcEndpointRef
通过上面方法,可以注册一个RpcEndpoint到RpcEnv环境对象中,由RpcEnv来管理RpcEndpoint到RpcEndpointRef的绑定关系。在注册RpcEndpoint时,每个RpcEndpoint都需要有一个唯一的名称。

RpcEndpoint

RpcEndpoint定义了RPC通信过程中的通信端对象,除了具有管理一个RpcEndpoint生命周期的操作(constructor-> onStart -> receive* ->onStop),并给出了通信过程中一个RpcEndpoint所具有的基于事件驱动的行为(连接、断开、网络异常),实际上对于Spark框架来说RpcEndpoint主要是接收消息并处理。
RpcEndpoint中有两个核心方法:

def  receive:PartialFunction[Any, Unit]={
    case_ =>throw newSparkException(self +" does not implement 'receive'")
}
def  receiveAndReply(context:RpcCallContext):PartialFunction[Any, Unit]={
  case_ => context.sendFailure(newSparkException(self +" won't reply anything"))
}

通过上面的receive方法,接收由RpcEndpointRef.send方法发送的消息,该类消息不需要进行响应消息(Reply),而只是在RpcEndpoint端进行处理。通过receiveAndReply方法,接收由RpcEndpointRef.ask发送的消息,RpcEndpoint端处理完消息后,需要给调用RpcEndpointRef.ask的通信端响应消息。

RpcEndPointRef

RpcEndpointRef是一个对RpcEndpoint的远程引用对象,通过它可以向远程的RpcEndpoint端发送消息以进行通信。RpcEndpointRef特质的定义,代码如下所示:

private[spark] abstract class RpcEndpointRef(conf: SparkConf)  extends Serializable with Logging { 
  private[this] val maxRetries = RpcUtils.numRetries(conf)
  private[this] val retryWaitMs = RpcUtils.retryWaitMs(conf)
  private[this] val defaultAskTimeout = RpcUtils.askRpcTimeout(conf)
  def address: RpcAddress
  def name: String
  def send(message: Any): Unit
  def ask[T: ClassTag](message: Any, timeout: RpcTimeout): Future[T]
  def ask[T: ClassTag](message: Any): Future[T] = ask(message, defaultAskTimeout)
  def askWithRetry[T: ClassTag](message: Any): T = askWithRetry(message, defaultAskTimeout)
  def askWithRetry[T: ClassTag](message: Any, timeout: RpcTimeout): T = {
    ... ...
  }
}

上面代码中,send方法发送消息后不等待响应,亦即Send-and-forget。而ask方法发送消息后需要等待通信对端给予响应,通过Future来异步获取响应结果。

Driver Spark Env中NettyRpcEnv创建

Driver Spark Env是Spark Application中Driver的运行环境,其需要创建很多组件,比如SecurityManager、rpcEnv、broadcastManager、mapOutputTracker、memoryManager、blockTransferService、blockManagerMaster、blockManager、metricsSystem等,由于本文是介绍Spark RPC机制的,估只介绍rpcEnv创建过程及服务启动过程。从NettyRpcEnv.scala的NettyRpcEnvFactory的Create方法说起

private[rpc] class NettyRpcEnvFactory extends RpcEnvFactory with Logging {
  def create(config: RpcEnvConfig): RpcEnv = {
    val sparkConf = config.conf
    //创建序列化
    val javaSerializerInstance = new JavaSerializer(sparkConf).newInstance().asInstanceOf[JavaSerializerInstance]
    //new 一个NettyRpcEnv实例
    val nettyEnv =  new NettyRpcEnv(sparkConf, javaSerializerInstance, config.host, config.securityManager)
    if (!config.clientMode) {
      val startNettyRpcEnv: Int => (NettyRpcEnv, Int) = {
        actualPort => nettyEnv.startServer(actualPort)
        (nettyEnv, nettyEnv.address.port)
      }
      try {
        // 根据指定的端口号和主机,启动Driver Rpc服务
        Utils.startServiceOnPort(config.port, startNettyRpcEnv, sparkConf, config.name)._1
      }
      catch {
        case NonFatal(e) =>
          nettyEnv.shutdown()
          throw e
      }
    }
  nettyEnv
  }
}

NettyRpcEnvFactory继承RpcEnvFactory并实现其Create方法,create方法中最重要的就是声明一个NettyRpc实例和启动服务。

1. 创建NettyRpcEnv
private[netty] class NettyRpcEnv(val conf: SparkConf, javaSerializerInstance: JavaSerializerInstance, host: String, securityManager: SecurityManager)  extends RpcEnv(conf) with Logging {  
  // 创建transportConf
  private[netty] val transportConf = SparkTransportConf.fromSparkConf(conf.clone.set("spark.rpc.io.numConnectionsPerPeer", "1"), "rpc", conf.getInt("spark.rpc.io.threads", 0))
  //创建Dispatcher,主要用户消息的分发处理
  private val dispatcher: Dispatcher = new Dispatcher(this)
  //创建streamManager
  private val streamManager = new NettyStreamManager(this)  
  //创建一个transportContext,主要用于创建Netty的Server和Client,其中Spark将Netty框架进行封装,以transportContext为外部切入口,与NettyRpcEndpoint等Spark代码对应,从而创建底层通信的服务端和客户端。后面会详细介绍Spark对Netty的封装。
  private val transportContext = new TransportContext(transportConf, new NettyRpcHandler(dispatcher, this, streamManager))

  private def createClientBootstraps(): java.util.List[TransportClientBootstrap] = {
    if (securityManager.isAuthenticationEnabled()) {
      java.util.Arrays.asList(new SaslClientBootstrap(transportConf, "", securityManager,        securityManager.isSaslEncryptionEnabled()))
    } else {
      java.util.Collections.emptyList[TransportClientBootstrap]
    }  
  }
  // 声明一个clientFactory,用户创建通信的客户端
  private val clientFactory = transportContext.createClientFactory(createClientBootstraps())  
  /**   
  * A separate client factory for file downloads. This avoids using the same RPC handler as   
  * the main RPC context, so that events caused by these clients are kept isolated from the   
  * main RPC traffic.   
  *   
  * It also allows for different configuration of certain properties, such as the number of   
  * connections per peer.   
  */  
  @volatile private var fileDownloadFactory: TransportClientFactory = _  

  //创建一个netty-rpc-env-timeout的守护线程
  val timeoutScheduler = ThreadUtils.newDaemonSingleThreadScheduledExecutor("netty-rpc-env-timeout")

  // Because TransportClientFactory.createClient is blocking, we need to run it in this thread pool  
  // to implement non-blocking send/ask.  
  // TODO: a non-blocking TransportClientFactory.createClient in future
  private[netty] val clientConnectionExecutor = ThreadUtils.newDaemonCachedThreadPool( "netty-rpc-connection",    conf.getInt("spark.rpc.connect.threads", 64))

  @volatile private var server: TransportServer = _  

  private val stopped = new AtomicBoolean(false)  
  /**   
  * A map for [[RpcAddress]] and [[Outbox]]. When we are connecting to a remote [[RpcAddress]],   
  * we just put messages to its [[Outbox]] to implement a non-blocking `send` method.  
  */  
  private val outboxes = new ConcurrentHashMap[RpcAddress, Outbox]()  
  /**   
  * Remove the address's Outbox and stop it.   
  */  
  private[netty] def removeOutbox(address: RpcAddress): Unit = {    
    val outbox = outboxes.remove(address)    
    if (outbox != null) {      
      outbox.stop()    
    }  
  }  
  
  //根据指定端口,启动transportServer
  def startServer(port: Int): Unit = {    
    val bootstraps: java.util.List[TransportServerBootstrap] =
    if(securityManager.isAuthenticationEnabled()) {  
      java.util.Arrays.asList(new SaslServerBootstrap(transportConf, securityManager)) 
    } else {   
      java.util.Collections.emptyList() 
    }
    //通过transportContext启动通信底层的服务端
    server = transportContext.createServer(host, port, bootstraps)
    //注册一个RpcEndpointVerifier,对Server进行验证
    dispatcher.registerRpcEndpoint(RpcEndpointVerifier.NAME, new RpcEndpointVerifier(this, dispatcher))  
  }

  @Nullable  override lazy val address: RpcAddress = {    
    if (server != null) 
      RpcAddress(host, server.getPort()) 
    else 
      null
  }  
  //重写rpcEnv的setupEndpoint方法,用户rpcEndpoint在rpcEnv上进行注册
  override def setupEndpoint(name: String, endpoint: RpcEndpoint): RpcEndpointRef = {
    dispatcher.registerRpcEndpoint(name, endpoint)  
  }  

  def asyncSetupEndpointRefByURI(uri: String): Future[RpcEndpointRef] = {    
    val addr = RpcEndpointAddress(uri)    
    val endpointRef = new NettyRpcEndpointRef(conf, addr, this)    
    val verifier = new NettyRpcEndpointRef(conf, RpcEndpointAddress(addr.rpcAddress, RpcEndpointVerifier.NAME), this)    
    verifier.ask[Boolean](RpcEndpointVerifier.CheckExistence(endpointRef.name)).flatMap { find =>  if (find) {  Future.successful(endpointRef) } else { Future.failed(new RpcEndpointNotFoundException(uri)) } }(ThreadUtils.sameThread)  
  }  
  
  override def stop(endpointRef: RpcEndpointRef): Unit = {
    require(endpointRef.isInstanceOf[NettyRpcEndpointRef])    
    dispatcher.stop(endpointRef)  
  }  
  
  private def postToOutbox(receiver: NettyRpcEndpointRef, message: OutboxMessage): Unit = {    
    if (receiver.client != null) {  
      message.sendWith(receiver.client)    
    } else {      
      require(receiver.address != null, "Cannot send message to client endpoint with no listen address.")      
      val targetOutbox = { 
        val outbox = outboxes.get(receiver.address)        
        if (outbox == null) {          
          val newOutbox = new Outbox(this, receiver.address)          
          val oldOutbox = outboxes.putIfAbsent(receiver.address, newOutbox)          
          if (oldOutbox == null) { 
            newOutbox
          } else {            
            oldOutbox
          }        
        } else {          
          outbox        
        }      
      }      
      if (stopped.get) {       
       // It's possible that we put `targetOutbox` after stopping. So we need to clean it.
       outboxes.remove(receiver.address)        
       targetOutbox.stop()      
      } else {        
        targetOutbox.send(message)      
      }    
    }  
  }  

  private[netty] def send(message: RequestMessage): Unit = {    
    val remoteAddr = message.receiver.address    
    if (remoteAddr == address) {      
      // Message to a local RPC endpoint.      
      try {        
        dispatcher.postOneWayMessage(message)      
      } 
      catch {        
        case e: RpcEnvStoppedException => logWarning(e.getMessage)      
      }    
    } else {      
      // Message to a remote RPC endpoint.      
      postToOutbox(message.receiver, OneWayOutboxMessage(serialize(message)))    
    }  
  }  

  private[netty] def createClient(address: RpcAddress): TransportClient = { clientFactory.createClient(address.host, address.port)  }  

  private[netty] def ask[T: ClassTag](message: RequestMessage, timeout: RpcTimeout): Future[T] = {
    val promise = Promise[Any]()    
    val remoteAddr = message.receiver.address    
    def onFailure(e: Throwable): Unit = {      
      if (!promise.tryFailure(e)) {        
        logWarning(s"Ignored failure: $e")      
      }    
    }    
    def onSuccess(reply: Any): Unit = reply match {      
      case RpcFailure(e) => onFailure(e)      
      case rpcReply => if (!promise.trySuccess(rpcReply)) { logWarning(s"Ignored message: $reply") }
      }    
      try {      
        if (remoteAddr == address) {        
          val p = Promise[Any]()        
          p.future.onComplete {          
            case Success(response) => onSuccess(response)          
            case Failure(e) => onFailure(e)        
        }(ThreadUtils.sameThread)        
          dispatcher.postLocalMessage(message, p)      
        } else {        
         val rpcMessage = RpcOutboxMessage(serialize(message), onFailure, (client, response) => onSuccess(deserialize[Any](client, response)))
         postToOutbox(message.receiver, rpcMessage)        
         promise.future.onFailure {
           case _: TimeoutException => rpcMessage.onTimeout()          
           case _ =>        
         }(ThreadUtils.sameThread)
       }      
       val timeoutCancelable = timeoutScheduler.schedule(new Runnable { 
         override def run(): Unit = {          
           onFailure(new TimeoutException(s"Cannot receive any reply in ${timeout.duration}")) 
         } 
        }, timeout.duration.toNanos, TimeUnit.NANOSECONDS)
        promise.future.onComplete { v =>  
            timeoutCancelable.cancel(true)
          }(ThreadUtils.sameThread)    
        } catch {      
          case NonFatal(e) => onFailure(e)    
        }    
        promise.future.mapTo[T].recover(timeout.addMessageIfTimeout)(ThreadUtils.sameThread)
  }  
  private[netty] def serialize(content: Any): ByteBuffer = {
    javaSerializerInstance.serialize(content)
  }  
  
  private[netty] def deserialize[T: ClassTag](client: TransportClient, bytes: ByteBuffer): T = {    
    NettyRpcEnv.currentClient.withValue(client) {      
      deserialize { 
        () =>  javaSerializerInstance.deserialize[T](bytes)      
      }    
    }  
  }  

  override def endpointRef(endpoint: RpcEndpoint): RpcEndpointRef = {
    dispatcher.getRpcEndpointRef(endpoint)  
  }  

  override def shutdown(): Unit = {    
    cleanup()  
  }  
  
  override def awaitTermination(): Unit = {    
    dispatcher.awaitTermination()  
  }  

  private def cleanup(): Unit = {    
    if (!stopped.compareAndSet(false, true)) {      
      return    
    }    
    val iter = outboxes.values().iterator()    
    while (iter.hasNext()) {      
      val outbox = iter.next()      
      outboxes.remove(outbox.address)      
      outbox.stop()    
    }    
    if (timeoutScheduler != null) {      
      timeoutScheduler.shutdownNow()    
    }    
    if (dispatcher != null) {      
      dispatcher.stop()    
    }    
    if (server != null) {     
     server.close()    
    }    
    if (clientFactory != null) {      
      clientFactory.close()    
    }    
    if (clientConnectionExecutor != null) {      
      clientConnectionExecutor.shutdownNow()    
    }    
    if (fileDownloadFactory != null) {      
      fileDownloadFactory.close()    
    }    
  }  

  override def deserialize[T](deserializationAction: () => T): T = {
    NettyRpcEnv.currentEnv.withValue(this) {      
      deserializationAction()    
    }  
  }  

  override def fileServer: RpcEnvFileServer = streamManager  

  override def openChannel(uri: String): ReadableByteChannel = {    
    val parsedUri = new URI(uri)    
    require(parsedUri.getHost() != null, "Host name must be defined.")
    require(parsedUri.getPort() > 0, "Port must be defined.")    
    require(parsedUri.getPath() != null && parsedUri.getPath().nonEmpty, "Path must be defined.")    
    val pipe = Pipe.open()    
    val source = new FileDownloadChannel(pipe.source())    
    try {      
      val client = downloadClient(parsedUri.getHost(), parsedUri.getPort())      
      val callback = new FileDownloadCallback(pipe.sink(), source, client)
      client.stream(parsedUri.getPath(), callback)    
    } catch {      
      case e: Exception =>  
        pipe.sink().close()        
        source.close()        
        throw e    
    }    
    source  
  }  

  private def downloadClient(host: String, port: Int): TransportClient = {    
    if (fileDownloadFactory == null) 
      synchronized {      
        if (fileDownloadFactory == null) {        
          val module = "files"        
          val prefix = "spark.rpc.io."        
          val clone = conf.clone()        
          // Copy any RPC configuration that is not overridden in the spark.files namespace.        
          conf.getAll.foreach { 
            case (key, value) => 
              if (key.startsWith(prefix)) {            
                val opt = key.substring(prefix.length())
                clone.setIfMissing(s"spark.$module.io.$opt", value)          
              }        
            }        
          val ioThreads = clone.getInt("spark.files.io.threads", 1)        
          val downloadConf = SparkTransportConf.fromSparkConf(clone, module, ioThreads)        
          val downloadContext = new TransportContext(downloadConf, new NoOpRpcHandler(), true)        
          fileDownloadFactory = downloadContext.createClientFactory(createClientBootstraps())      
      }    
    }    
    fileDownloadFactory.createClient(host, port)  
  }  

  private class FileDownloadChannel(source: ReadableByteChannel) extends ReadableByteChannel {    
    @volatile private var error: Throwable = _    
    def setError(e: Throwable): Unit = {      error = e      source.close()    }    
    override def read(dst: ByteBuffer): Int = {      
      Try(source.read(dst)) match {        
        case Success(bytesRead) => bytesRead        
        case Failure(readErr) =>          
          if (error != null) {            
           throw error          
          } else {            
            throw readErr          
          }      
        }    
      }    
      override def close(): Unit = source.close()    
      override def isOpen(): Boolean = source.isOpen()  
  }  

  private class FileDownloadCallback(sink: WritableByteChannel, source: FileDownloadChannel, client: TransportClient) extends StreamCallback {    
    override def onData(streamId: String, buf: ByteBuffer): Unit = {      
      while (buf.remaining() > 0) {        
        sink.write(buf)      
      }    
    }    
    override def onComplete(streamId: String): Unit = {      
      sink.close()    
    }    
    override def onFailure(streamId: String, cause: Throwable): Unit = {      
      logDebug(s"Error downloading stream $streamId.", cause)
      source.setError(cause)      
      sink.close()
    }  
  }
}

新创建的NettyRpcEnv主要用于Endpoint的注册、启动transportServer、获得RPCEndpointRef、创建客户端等等;其主要成员有dispatcher、transportContext。

1.1 Dispatcher介绍

Dispatcher的主要作用是保存注册的RpcEndpoint、分发相应的Message到RpcEndPoint中进行处理。

private[netty] class Dispatcher(nettyEnv: NettyRpcEnv) extends Logging {
  // Dispatcher的内部类,主要是声明一个
  private class EndpointData(val name: String,  val endpoint: RpcEndpoint,  val ref:   NettyRpcEndpointRef) {
    val inbox = new Inbox(ref, endpoint)  
  }  

  // 维护一个HaskMap,保存Name与EndpointData的关系
  private val endpoints = new ConcurrentHashMap[String, EndpointData]  
  // 维护一个HaskMap,保存RpcEndpoint与RpcEndpointRef的关系
  private val endpointRefs = new ConcurrentHashMap[RpcEndpoint, RpcEndpointRef]
 
  // Track the receivers whose inboxes may contain messages.  
  //维护一个BlockingQueue的队列,用于保存拥有消息的EndpointData,注册Endpoint、
  //发送消息时、停止RpcEnv时、取消注册的Endpoint时,会在receivers中添加相应的EndpointData
  private val receivers = new LinkedBlockingQueue[EndpointData]  

  /**   
  * True if the dispatcher has been stopped. Once stopped, all messages posted will be bounced immediately.   
  */  
  @GuardedBy("this")  private var stopped = false  

  // 根据Name和RPCEndpoint,在RpcEnv上进行注册
  def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {
    //根据NettyEnv的address和参数Name,创建RpcEndpointAddress
    val addr = RpcEndpointAddress(nettyEnv.address, name)
    //创建对应的NettyRpcEndpointRef
    val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)
    synchronized {      
      if (stopped) {        
        throw new IllegalStateException("RpcEnv has been stopped")      
      }
      //新建一个EndpointData,里面主要包含一个inbox成员,后面会讲到。
      //将新创建的EndpointData和对应的Name添加到endpoints中
      if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {
        throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")
      }
      val data = endpoints.get(name)
      //将endpoint和对应的endpointRef添加到endpointRefs中
      endpointRefs.put(data.endpoint, data.ref)
      //在receivers中添加新创建的endpointData
      receivers.offer(data)
      // for the OnStart message
    }
    //返回对应的EndpointRef
    endpointRef
  }

  //根据endpoint获取对应的endpointRef
  def getRpcEndpointRef(endpoint: RpcEndpoint): RpcEndpointRef = endpointRefs.get(endpoint)

  //从endpointRefs中移除对应的endpoint
  def removeRpcEndpointRef(endpoint: RpcEndpoint): Unit = endpointRefs.remove(endpoint)  
  
  // Should be idempotent  private
  // 根据Name,取消其在NettyRpcEnv中注册的endpoint
  def unregisterRpcEndpoint(name: String): Unit = { 
     //从endpoints中移除对应的endpointData
    val   data = endpoints.remove(name)
    if (data != null) {
      //调用endpointData中inbox的stop方法,停止endpointData
      data.inbox.stop()
      //将endpointData添加到receivers中,以便守护线程能执行endpointData.inbox的message
      receivers.offer(data)  
      // for the OnStop message    
    }
    // Don't clean `endpointRefs` here because it's possible that some messages are being processed    
    // now and they can use `getRpcEndpointRef`. So `endpointRefs` will be cleaned in Inbox via    
    // `removeRpcEndpointRef`.  
  }  

  def stop(rpcEndpointRef: RpcEndpointRef): Unit = {    
    synchronized {      
      if (stopped) {
        // This endpoint will be stopped by Dispatcher.stop() method.        
        return
      }      
      unregisterRpcEndpoint(rpcEndpointRef.name)    
    }  
  }  

  /**   
  * Send a message to all registered [[RpcEndpoint]]s in this process.   
  *   
  * This can be used to make network events known to all end points (e.g. "a new node connected").   
  */ 
  //向所有已经注册的RpcEndpoint发送消息
  def postToAll(message: InboxMessage): Unit = {    
    val iter = endpoints.keySet().iterator()    
    while (iter.hasNext) {      
      val name = iter.next      
      postMessage(name, message, (e) => logWarning(s"Message $message dropped. ${e.getMessage}"))    
    }  
  }  

  /** Posts a message sent by a remote endpoint. */
  //发布一个由远端endpoint发送的消息
  def postRemoteMessage(message: RequestMessage, callback: RpcResponseCallback): Unit = {
    val rpcCallContext =  new RemoteNettyRpcCallContext(nettyEnv, callback, message.senderAddress)
    val rpcMessage = RpcMessage(message.senderAddress, message.content, rpcCallContext)    
    postMessage(message.receiver.name, rpcMessage, (e) => callback.onFailure(e))  
  }  

  /** Posts a message sent by a local endpoint. */
  //发布一个由本地endpoint发送的消息
  def postLocalMessage(message: RequestMessage, p: Promise[Any]): Unit = {    
    val rpcCallContext = new LocalNettyRpcCallContext(message.senderAddress, p)    
    val rpcMessage = RpcMessage(message.senderAddress, message.content, rpcCallContext)    
    postMessage(message.receiver.name, rpcMessage, (e) => p.tryFailure(e))  
  }  

  /** Posts a one-way message. */  
  def postOneWayMessage(message: RequestMessage): Unit = {
    postMessage(message.receiver.name, OneWayMessage(message.senderAddress, message.content),      (e) => throw e)  
  }  

  /**   
  * Posts a message to a specific endpoint.   
  *   
  * @param endpointName name of the endpoint.   
  * @param message the message to post   
  * @param callbackIfStopped callback function if the endpoint is stopped.   
  */ 
  //将消息发送给特定的endpoint进行处理,参数1:endpoint的名字,参数2:消息,参数3:当endpoint停止时的回调函数
  private def postMessage(endpointName: String,  message: InboxMessage,  callbackIfStopped: (Exception) => Unit): Unit = {
    val error = synchronized { 
      // 根据endpointName获得对应的endpointData
      val data = endpoints.get(endpointName)
      if (stopped) {
        Some(new RpcEnvStoppedException())
      } else if (data == null) {
        Some(new SparkException(s"Could not find $endpointName."))
      } else {
        //将Message添加到该endpointData的inbox的message中
        data.inbox.post(message)
        //将endpointData添加到receivers中
        receivers.offer(data)
        None
      }
    }
    // We don't need to call `onStop` in the `synchronized` block
    error.foreach(callbackIfStopped)
  }  

  def stop(): Unit = {    
    synchronized {      
      if (stopped) {        
        return      
      }      
      stopped = true    
    }    
    // Stop all endpoints. This will queue all endpoints for processing by the message loops.    
    endpoints.keySet().asScala.foreach(unregisterRpcEndpoint)    
    // Enqueue a message that tells the message loops to stop.    receivers.offer(PoisonPill)    
    threadpool.shutdown()  
  }  

  def awaitTermination(): Unit = {    
    threadpool.awaitTermination(Long.MaxValue, TimeUnit.MILLISECONDS)  
  }  

  /**   
  * Return if the endpoint exists   
  */
  //判断endpoints中是否包含对应的endpointName
  def verify(name: String): Boolean = {    endpoints.containsKey(name)  }  

  /** Thread pool used for dispatching messages. */
  //创建一个线程组,用于分发消息
  private val threadpool: ThreadPoolExecutor = {
    //根据配置项,获的线程组中线程个数
    val numThreads = nettyEnv.conf.getInt("spark.rpc.netty.dispatcher.numThreads",      math.max(2, Runtime.getRuntime.availableProcessors()))
    //创建线程组
    val pool = ThreadUtils.newDaemonFixedThreadPool(numThreads, "dispatcher-event-loop")
    //创建多线程,执行相应的MessageLoop
    for (i <- 0 until numThreads) {      
      pool.execute(new MessageLoop)    
    }    
    pool  
  }  

  /** Message loop used for dispatching messages. */  
  //声明一个MessageLoop继承Runnable
  private class MessageLoop extends Runnable {    
    override def run(): Unit = {      
      try {        
        while (true) {
          try {
            //从receivers中获得一个endpointData,由于receivers是LinkBlockingQueue,所以如果receivers中没有元素时,该线程会阻塞
            val data = receivers.take()
            //获取的元素如果是PoisonPill,将停止该线程,同时 将PoisonPill继续放回receivers中,以便停止所有线程
            if (data == PoisonPill) {
            // Put PoisonPill back so that other MessageLoops can see it.
              receivers.offer(PoisonPill)
              return
            }
            //调用rpcEndpointData中inbox的process方法,处理响应RpcEndpointData中的Message
              data.inbox.process(Dispatcher.this)
          } catch {
            case NonFatal(e) => logError(e.getMessage, e)
          }
        }
      } catch {
        case ie: InterruptedException => // exit
      }
    }
  }

  /** A poison endpoint that indicates MessageLoop should exit its message loop. */  
  private val PoisonPill = new EndpointData(null, null, null)}

根据上面的代码可以看出,Dispatcher在进行Message分发到相应的Endpoint进行处理时,实际上是将Message分发到endpointData中进行处理了,而EndpointData类中最重要的成员就是inbox,下面介绍Inbox。

1.2 Inbox
private[netty] class Inbox(val endpointRef: NettyRpcEndpointRef,  val endpoint: RpcEndpoint)  extends Logging {  
inbox =>  
  // Give this an alias so we can use it more clearly in closures.
  // 声明一个InboxMessage类型的LinkedList,命名为message
  @GuardedBy("this")  protected val messages = new java.util.LinkedList[InboxMessage]()

  /** True if the inbox (and its associated endpoint) is stopped. */  
  @GuardedBy("this")  private var stopped = false  
  
  /** Allow multiple threads to process messages at the same time. */
  //允许多个线程同时处理message
  @GuardedBy("this")  private var enableConcurrent = false  

  /** The number of threads processing messages for this inbox. */
  //对当前处理message的进程的计数
  @GuardedBy("this")  private var numActiveThreads = 0  

  // OnStart should be the first message to process
  //最开始在声明的时候就将OnStart消息添加到message中
  inbox.synchronized {
    messages.add(OnStart)  
  }  

  /**   
  * Process stored messages.   
  */
  //处理消息
  def process(dispatcher: Dispatcher): Unit = {    
    var message: InboxMessage = null    
    inbox.synchronized {      
      if (!enableConcurrent && numActiveThreads != 0) {        
        return
      }
      //获取list中头部的第一个message
      message = messages.poll()
      //去过message不为Null,就将numActiveThreads加1
      if (message != null) {
        numActiveThreads += 1 
      } else {
        return      
      }
    }
    //对Message进行匹配,然后执行
    while (true) {      
      safelyCall(endpoint) {        
        message match {          
          case RpcMessage(_sender, content, context) =>  
            try {              
              endpoint.receiveAndReply(context).applyOrElse[Any, Unit](content, { msg =>                
                throw new SparkException(s"Unsupported message $message from ${_sender}")              
              })            
            } catch {              
              case NonFatal(e) =>                
                context.sendFailure(e)                
                // Throw the exception -- this exception will be caught by the safelyCall function.  
                // The endpoint's onError function will be called.                
                  throw e            
            }          
          case OneWayMessage(_sender, content) =>
            endpoint.receive.applyOrElse[Any, Unit](content, { msg =>              
             throw new SparkException(s"Unsupported message $message from ${_sender}")            
            })          
          case OnStart =>            
            endpoint.onStart()            
            if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {              
              inbox.synchronized {                
                if (!stopped) {                  
                  enableConcurrent = true               
                }              
              }            
            }          
          case OnStop =>            
            val activeThreads = inbox.synchronized { inbox.numActiveThreads }
            assert(activeThreads == 1,              
              s"There should be only a single active thread but found $activeThreads threads.")            
            dispatcher.removeRpcEndpointRef(endpoint)            
            endpoint.onStop()            
            assert(isEmpty, "OnStop should be the last message")          
          case RemoteProcessConnected(remoteAddress) =>
            endpoint.onConnected(remoteAddress)          
          case RemoteProcessDisconnected(remoteAddress) =>
            endpoint.onDisconnected(remoteAddress)          
          case RemoteProcessConnectionError(cause, remoteAddress) =>
            endpoint.onNetworkError(cause, remoteAddress)        
        }      
      }      
      inbox.synchronized {        
        // "enableConcurrent" will be set to false after `onStop` is called, so we should check it  every time.        
        if (!enableConcurrent && numActiveThreads != 1) {          
          // If we are not the only one worker, exit          
          numActiveThreads -= 1          
          return        
        }
        //获取message中的下一个元素,继续进行匹配执行
        message = messages.poll()        
        if (message == null) {          
          numActiveThreads -= 1          
          return        
        }      
      }    
    }  
  }  

  //将message消息添加到messages列表中
  def post(message: InboxMessage): Unit = inbox.synchronized {
    //如果inbox已经停止,就将OnStop添加到messages中
    if (stopped) {      
      // We already put "OnStop" into "messages", so we should drop further messages
      onDrop(message)    
    } else {      
      messages.add(message)      
      false    
    }  
  }  

  def stop(): Unit = inbox.synchronized   {    
    // The following codes should be in `synchronized` so that we can make sure "OnStop" is the last    
    // message    
    if (!stopped) {      
      // We should disable concurrent here. Then when RpcEndpoint.onStop is called, it's the only      
      // thread that is processing messages. So `RpcEndpoint.onStop` can release its resources      
      // safely.      
      enableConcurrent = false      
      stopped = true      
      messages.add(OnStop)     
      // Note: The concurrent events in messages will be processed one by one.    
    }  
  }  

  //判断messages是否为空
  def isEmpty: Boolean = inbox.synchronized { messages.isEmpty }  

  /**
  * Called when we are dropping a message. Test cases override this to test message dropping.   
  * Exposed for testing.   
  */
  protected def onDrop(message: InboxMessage): Unit = {    
    logWarning(s"Drop $message because $endpointRef is stopped")  
  }  
  
  /**   
  * Calls action closure, and calls the endpoint's onError function in the case of exceptions.   
  */  
  private def safelyCall(endpoint: RpcEndpoint)(action: => Unit): Unit = {    
    try action catch {      
      case NonFatal(e) =>        
        try endpoint.onError(e) catch {          
          case NonFatal(ee) => logError(s"Ignoring error", ee)        
        }    
      }  
    }
  }

至此,NettyRpcEnv中的Dispatcher已经讲完了,主要流程是:

  1. 创建Dispatcher
  • 声明线程组,并监控receivers是否有新的EndpointData
    • 如果有消息,并且不为PoisonPill,调用相应EndpointData的Inbox的process方法进行消息处理
      1). 依次从相应的EndpointData的inbox的messages中获取第一个元素
      2). 匹配消息,并调用对应的endpoint的相应方法进行处理
    • 如果没有消息,则阻塞等待
    • 如果有消息,但是为PoisonPill,则将PoisonPill继续添加到receivers中,然后停止该线程
  1. 根据name和endpoint,在NettyRpcEnv进行注册
  • 根据nettyEnv.conf、RpcEndpointAddress和nettyEnv创建对应的NettyRpcEndpointRef
  • 根据name、endpoint、endpointRef创建新的EndpointData
  • 将name -> EndpointData添加到endpoints中
  • 将endpoint -> endpointRef添加到endpointRefs中
  • 将新建的EndpointData添加到receivers中
  1. 将InboxMessage消息分发到相应的EndpointData中进行处理
  • 根据Name获取EndpointData
  • 将Message添加到EndpointData的Inbox的messages中
  • 将EndpointData添加到receivers中

接下来重点介绍下RpcEndpointRef的生成方法,根据name和rpcendpoint在NettyRpcEnv注册时,首先会根据name和NettyEnv的address创建RpcEndpointAddress,然后再根据RpcEndpointAddress、NettyEnv.conf和NettyEnv创建一个相应的NettyRpcEndpointRef,也就是说NettyRpcEndpointRef的生成与实际的RPCEndpoint并没有什么直接联系,只是在NettyRpcEnv中依据某个Name生成一个NettyRpcEndpointRef,然后客户端通过NettyRpcEndpotinRef发送消息时,NettyRpcEnv会根据消息中的name,将消息发送给对应的NettyRpcEndpoint进行相应消息处理。

1.3 NettyRpcEndpointRef

private[netty] class NettyRpcEndpointRef( @transient private val conf: SparkConf,    endpointAddress: RpcEndpointAddress,    @transient @volatile private var nettyEnv: NettyRpcEnv)  extends RpcEndpointRef(conf) with Serializable with Logging { 
   //声明一个transportClient
  @transient @volatile var client: TransportClient = _ 
   //根据endpointAddress获得NettyRpcEnv的host地址
  private val _address = if (endpointAddress.rpcAddress != null) endpointAddress else null
  //声明一个_name变量并赋值为endpointAddress的Name
  private val _name = endpointAddress.name
  
  override def address: RpcAddress = if (_address != null) _address.rpcAddress else null
  //读对象
  private def readObject(in: ObjectInputStream): Unit = {    
    in.defaultReadObject()    
    nettyEnv = NettyRpcEnv.currentEnv.value    
    client = NettyRpcEnv.currentClient.value  
  }  
  //写对象
  private def writeObject(out: ObjectOutputStream): Unit = {    
    out.defaultWriteObject()  
  }  
  
  override def name: String = _name  
  //重写RPCEndpointRef的ask方法
  override def ask[T: ClassTag](message: Any, timeout: RpcTimeout): Future[T] = {
    nettyEnv.ask(RequestMessage(nettyEnv.address, this, message), timeout)  
  }  
  //重写RPCEndpointRef的send方法
  override def send(message: Any): Unit = {    
    require(message != null, "Message is null")
    nettyEnv.send(RequestMessage(nettyEnv.address, this, message))  
  }  

  override def toString: String = s"NettyRpcEndpointRef(${_address})"  

  def toURI: URI = new URI(_address.toString)  

  final override def equals(that: Any): Boolean = that match {    
    case other: NettyRpcEndpointRef => _address == other._address    
    case _ => false  
  }  
  final override def hashCode(): Int = if (_address == null) 0 else _address.hashCode()}

至此,Spark RPC通信模块中的NettyRpcEnv、NettyRpcEndpoint、NettyRpcEndpointRef已经全部梳理完成。

你可能感兴趣的:(Spark 2.0 RPC通信层设计原理分析)